与希尔方程相关的随机奇异矩阵乘积的显方差CLT

Pub Date : 2020-12-03 DOI:10.1142/S2010326322500186
Phanuel Mariano, Hugo Panzo
{"title":"与希尔方程相关的随机奇异矩阵乘积的显方差CLT","authors":"Phanuel Mariano, Hugo Panzo","doi":"10.1142/S2010326322500186","DOIUrl":null,"url":null,"abstract":"We prove a central limit theorem (CLT) for the product of a class of random singular matrices related to a random Hill’s equation studied by Adams–Bloch–Lagarias. The CLT features an explicit formula for the variance in terms of the distribution of the matrix entries and this allows for exact calculation in some examples. Our proof relies on a novel connection to the theory of [Formula: see text]-dependent sequences which also leads to an interesting and precise nondegeneracy condition.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLT with explicit variance for products of random singular matrices related to Hill’s equation\",\"authors\":\"Phanuel Mariano, Hugo Panzo\",\"doi\":\"10.1142/S2010326322500186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a central limit theorem (CLT) for the product of a class of random singular matrices related to a random Hill’s equation studied by Adams–Bloch–Lagarias. The CLT features an explicit formula for the variance in terms of the distribution of the matrix entries and this allows for exact calculation in some examples. Our proof relies on a novel connection to the theory of [Formula: see text]-dependent sequences which also leads to an interesting and precise nondegeneracy condition.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326322500186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326322500186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了一类随机奇异矩阵与Adams-Bloch-Lagarias研究的随机Hill方程乘积的中心极限定理(CLT)。CLT以矩阵项分布的显式方差公式为特征,这允许在某些示例中进行精确计算。我们的证明依赖于与[公式:见文本]相关序列理论的新联系,这也导致了一个有趣而精确的非简并条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
CLT with explicit variance for products of random singular matrices related to Hill’s equation
We prove a central limit theorem (CLT) for the product of a class of random singular matrices related to a random Hill’s equation studied by Adams–Bloch–Lagarias. The CLT features an explicit formula for the variance in terms of the distribution of the matrix entries and this allows for exact calculation in some examples. Our proof relies on a novel connection to the theory of [Formula: see text]-dependent sequences which also leads to an interesting and precise nondegeneracy condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信