{"title":"动态双流体模型OLGA;理论与应用","authors":"K. Bendiksen, Dag Maines, R. Moe, S. Nuland","doi":"10.2118/19451-PA","DOIUrl":null,"url":null,"abstract":"Dynamic two-fluid models have found a wide range of application in the simulation of two-phase-flow systems, particularly for the analysis of steam/water flow in the core of a nuclear reactor. Until quite recently, however, very few attempts have been made to use such models in the simulation of two-phase oil and gas flow in pipelines. This paper presents a dynamic two-fluid model, OLGA, in detail, stressing the basic equations and the two-fluid models applied. Predictions of steady-state pressure drop, liquid hold-up, and flow-regime transitions are compared with data from the SINTEF Two-Phase Flow Laboratory and from the literature. Comparisons with evaluated field data are also presented.","PeriodicalId":22020,"journal":{"name":"Spe Production Engineering","volume":"50 1","pages":"171-180"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"482","resultStr":"{\"title\":\"The dynamic two-fluid model OLGA; Theory and application\",\"authors\":\"K. Bendiksen, Dag Maines, R. Moe, S. Nuland\",\"doi\":\"10.2118/19451-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic two-fluid models have found a wide range of application in the simulation of two-phase-flow systems, particularly for the analysis of steam/water flow in the core of a nuclear reactor. Until quite recently, however, very few attempts have been made to use such models in the simulation of two-phase oil and gas flow in pipelines. This paper presents a dynamic two-fluid model, OLGA, in detail, stressing the basic equations and the two-fluid models applied. Predictions of steady-state pressure drop, liquid hold-up, and flow-regime transitions are compared with data from the SINTEF Two-Phase Flow Laboratory and from the literature. Comparisons with evaluated field data are also presented.\",\"PeriodicalId\":22020,\"journal\":{\"name\":\"Spe Production Engineering\",\"volume\":\"50 1\",\"pages\":\"171-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"482\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spe Production Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/19451-PA\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spe Production Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/19451-PA","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The dynamic two-fluid model OLGA; Theory and application
Dynamic two-fluid models have found a wide range of application in the simulation of two-phase-flow systems, particularly for the analysis of steam/water flow in the core of a nuclear reactor. Until quite recently, however, very few attempts have been made to use such models in the simulation of two-phase oil and gas flow in pipelines. This paper presents a dynamic two-fluid model, OLGA, in detail, stressing the basic equations and the two-fluid models applied. Predictions of steady-state pressure drop, liquid hold-up, and flow-regime transitions are compared with data from the SINTEF Two-Phase Flow Laboratory and from the literature. Comparisons with evaluated field data are also presented.