大基数假设下由非平稳理想引起的等价关系的可约性

IF 0.6 3区 数学 Q2 LOGIC
D. Asperó, Tapani Hyttinen, V. Kulikov, Miguel Moreno
{"title":"大基数假设下由非平稳理想引起的等价关系的可约性","authors":"D. Asperó, Tapani Hyttinen, V. Kulikov, Miguel Moreno","doi":"10.1215/00294527-2019-0024","DOIUrl":null,"url":null,"abstract":"Working under large cardinal assumptions, we study the Borel-reducibility between equivalence relations modulo restrictions of the non-stationary ideal on some fixed cardinal \\kappa. We show the consistency of E^{\\lambda^{++},\\lambda^{++}}_{\\lambda\\text{-club}}, the relation of equivalence modulo the non-stationary ideal restricted to S^{\\lambda^{++}}_\\lambda in the space (\\lambda^{++})^{\\lambda^{++}}, being continuously reducible to E^{2,\\lambda^{++}}_{\\lambda^+\\text{-club}}, the relation of equivalence modulo the non-stationary ideal restricted to S^{\\lambda^{++}}_{\\lambda^+} in the space 2^{\\lambda^{++}}. Then we show that for \\kappa ineffable E^{2, \\kappa}_{\\text{reg}}, the relation of equivalence modulo the non-stationary ideal restricted to regular cardinals in the space 2^{\\kappa}, is \\Sigma^1_1-complete. We finish by showing, for \\Pi_2^1-indescribable \\kappa, that the isomorphism relation between dense linear orders of cardinality \\kappa is \\Sigma^1_1-complete.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Reducibility of Equivalence Relations Arising from Nonstationary Ideals under Large Cardinal Assumptions\",\"authors\":\"D. Asperó, Tapani Hyttinen, V. Kulikov, Miguel Moreno\",\"doi\":\"10.1215/00294527-2019-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Working under large cardinal assumptions, we study the Borel-reducibility between equivalence relations modulo restrictions of the non-stationary ideal on some fixed cardinal \\\\kappa. We show the consistency of E^{\\\\lambda^{++},\\\\lambda^{++}}_{\\\\lambda\\\\text{-club}}, the relation of equivalence modulo the non-stationary ideal restricted to S^{\\\\lambda^{++}}_\\\\lambda in the space (\\\\lambda^{++})^{\\\\lambda^{++}}, being continuously reducible to E^{2,\\\\lambda^{++}}_{\\\\lambda^+\\\\text{-club}}, the relation of equivalence modulo the non-stationary ideal restricted to S^{\\\\lambda^{++}}_{\\\\lambda^+} in the space 2^{\\\\lambda^{++}}. Then we show that for \\\\kappa ineffable E^{2, \\\\kappa}_{\\\\text{reg}}, the relation of equivalence modulo the non-stationary ideal restricted to regular cardinals in the space 2^{\\\\kappa}, is \\\\Sigma^1_1-complete. We finish by showing, for \\\\Pi_2^1-indescribable \\\\kappa, that the isomorphism relation between dense linear orders of cardinality \\\\kappa is \\\\Sigma^1_1-complete.\",\"PeriodicalId\":51259,\"journal\":{\"name\":\"Notre Dame Journal of Formal Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notre Dame Journal of Formal Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00294527-2019-0024\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notre Dame Journal of Formal Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00294527-2019-0024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 6

摘要

在大基数假设下,研究了非平稳理想在若干固定基数上的等价关系的模限制之间的borel -约可性 \kappa. 我们证明了E^的一致性{\lambda^{++},\lambda^{++}}_{\lambda\text{-club}},限制于S^的非平稳理想的等价模关系{\lambda^{++}}_\lambda 在空间(\lambda^{++})^{\lambda^{++}},连续可约为E^{2,\lambda^{++}}_{\lambda^+\text{-club}},限制于S^的非平稳理想的等价模关系{\lambda^{++}}_{\lambda^+} 在空间2^中{\lambda^{++}}. 然后我们来证明 \kappa 不可言喻的E^{2, \kappa}_{\text{reg}},在空间2^的正则基数上的非平稳理想的等价模关系{\kappa}是吗? \Sigma^1_1-完整。我们以展示结束 \Pi2^1,难以描述 \kappa,稠密线性基序之间的同构关系 \kappa 是 \Sigma^1_1-完整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducibility of Equivalence Relations Arising from Nonstationary Ideals under Large Cardinal Assumptions
Working under large cardinal assumptions, we study the Borel-reducibility between equivalence relations modulo restrictions of the non-stationary ideal on some fixed cardinal \kappa. We show the consistency of E^{\lambda^{++},\lambda^{++}}_{\lambda\text{-club}}, the relation of equivalence modulo the non-stationary ideal restricted to S^{\lambda^{++}}_\lambda in the space (\lambda^{++})^{\lambda^{++}}, being continuously reducible to E^{2,\lambda^{++}}_{\lambda^+\text{-club}}, the relation of equivalence modulo the non-stationary ideal restricted to S^{\lambda^{++}}_{\lambda^+} in the space 2^{\lambda^{++}}. Then we show that for \kappa ineffable E^{2, \kappa}_{\text{reg}}, the relation of equivalence modulo the non-stationary ideal restricted to regular cardinals in the space 2^{\kappa}, is \Sigma^1_1-complete. We finish by showing, for \Pi_2^1-indescribable \kappa, that the isomorphism relation between dense linear orders of cardinality \kappa is \Sigma^1_1-complete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
14.30%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Notre Dame Journal of Formal Logic, founded in 1960, aims to publish high quality and original research papers in philosophical logic, mathematical logic, and related areas, including papers of compelling historical interest. The Journal is also willing to selectively publish expository articles on important current topics of interest as well as book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信