R^2中具有指数Neumann数据的椭圆方程的冒泡解

IF 1.2 2区 数学 Q1 MATHEMATICS
Shengbing Deng, M. Musso
{"title":"R^2中具有指数Neumann数据的椭圆方程的冒泡解","authors":"Shengbing Deng, M. Musso","doi":"10.2422/2036-2145.201204_007","DOIUrl":null,"url":null,"abstract":"Let  be a bounded domain in R2 with smooth boundary; we study the following Neumann problem 8>< >: −1u + u = 0 in  @u @⌫ = %u p−1eu p on @, (0.1) where ⌫ is the outer normal vector of @, % > 0 is a small parameter and 0 < p < 2. We construct bubbling solutions to problem (0.1) by a Lyapunov-Schmidt reduction procedure.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"362 1","pages":"699-744"},"PeriodicalIF":1.2000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bubbling solutions for an elliptic equation with exponential Neumann data in R^2\",\"authors\":\"Shengbing Deng, M. Musso\",\"doi\":\"10.2422/2036-2145.201204_007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let  be a bounded domain in R2 with smooth boundary; we study the following Neumann problem 8>< >: −1u + u = 0 in  @u @⌫ = %u p−1eu p on @, (0.1) where ⌫ is the outer normal vector of @, % > 0 is a small parameter and 0 < p < 2. We construct bubbling solutions to problem (0.1) by a Lyapunov-Schmidt reduction procedure.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"362 1\",\"pages\":\"699-744\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.201204_007\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201204_007","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设↓为R2中具有光滑边界的有界域;我们研究了以下的Neumann问题8>< >:- 1u + u = 0 in´@u @ = %u p - 1eu p on @,(0.1)其中,是@的外法向量,% > 0是一个小参数,且0 < p < 2。我们用Lyapunov-Schmidt约简过程构造了问题(0.1)的冒泡解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bubbling solutions for an elliptic equation with exponential Neumann data in R^2
Let  be a bounded domain in R2 with smooth boundary; we study the following Neumann problem 8>< >: −1u + u = 0 in  @u @⌫ = %u p−1eu p on @, (0.1) where ⌫ is the outer normal vector of @, % > 0 is a small parameter and 0 < p < 2. We construct bubbling solutions to problem (0.1) by a Lyapunov-Schmidt reduction procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信