组织学图像特征挖掘揭示肾癌的紧急诊断特性

S. Kothari, J. Phan, A. Young, May D. Wang
{"title":"组织学图像特征挖掘揭示肾癌的紧急诊断特性","authors":"S. Kothari, J. Phan, A. Young, May D. Wang","doi":"10.1109/BIBM.2011.112","DOIUrl":null,"url":null,"abstract":"Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an \"optimal\" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"28 1","pages":"422-425"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer\",\"authors\":\"S. Kothari, J. Phan, A. Young, May D. Wang\",\"doi\":\"10.1109/BIBM.2011.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an \\\"optimal\\\" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"28 1\",\"pages\":\"422-425\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2011.112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

计算机辅助组织图像分类系统对于做出客观、及时的癌症诊断决策非常重要。这些系统使用图像特征的组合来量化各种图像属性。由于研究人员倾向于在特定的癌症终点上验证他们的诊断系统,因此很难预测在新的癌症终点下哪些图像特征会表现良好。在本文中,我们定义了一组全面的通用图像特征(由12个不同的特征子集组成),这些特征子集量化了各种图像属性。我们使用数据挖掘方法来确定哪些特征子集和图像属性在应用于特定癌症终点时作为“最佳”诊断模型的一部分出现。我们的目标是评估这些综合图像特征集的性能,以应用于各种各样的诊断问题。我们在12个终点进行了这项研究,包括6个肾肿瘤亚型终点和6个肾癌分级终点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer
Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an "optimal" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信