Maria Mannone, Federico Favali, Balandino Di Donato, L. Turchet
{"title":"量子GestART:识别和应用数学、艺术和感知组织之间的相关性","authors":"Maria Mannone, Federico Favali, Balandino Di Donato, L. Turchet","doi":"10.1080/17459737.2020.1726691","DOIUrl":null,"url":null,"abstract":"Mathematics can help analyze the arts and inspire new artwork. Mathematics can also help make transformations from one artistic medium to another, considering exceptions and choices, as well as artists' individual and unique contributions. We propose a method based on diagrammatic thinking and quantum formalism. We exploit decompositions of complex forms into a set of simple shapes, discretization of complex images, and Dirac notation, imagining a world of “prototypes” that can be connected to obtain a fine or coarse-graining approximation of a given visual image. Visual prototypes are exchanged with auditory ones, and the information (position, size) characterizing visual prototypes is connected with the information (onset, duration, loudness, pitch range) characterizing auditory prototypes. The topic is contextualized within a philosophical debate (discreteness and comparison of apparently unrelated objects), it develops through mathematical formalism, and it leads to programming, to spark interdisciplinary thinking and ignite creativity within STEAM.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Quantum GestART: identifying and applying correlations between mathematics, art, and perceptual organization\",\"authors\":\"Maria Mannone, Federico Favali, Balandino Di Donato, L. Turchet\",\"doi\":\"10.1080/17459737.2020.1726691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematics can help analyze the arts and inspire new artwork. Mathematics can also help make transformations from one artistic medium to another, considering exceptions and choices, as well as artists' individual and unique contributions. We propose a method based on diagrammatic thinking and quantum formalism. We exploit decompositions of complex forms into a set of simple shapes, discretization of complex images, and Dirac notation, imagining a world of “prototypes” that can be connected to obtain a fine or coarse-graining approximation of a given visual image. Visual prototypes are exchanged with auditory ones, and the information (position, size) characterizing visual prototypes is connected with the information (onset, duration, loudness, pitch range) characterizing auditory prototypes. The topic is contextualized within a philosophical debate (discreteness and comparison of apparently unrelated objects), it develops through mathematical formalism, and it leads to programming, to spark interdisciplinary thinking and ignite creativity within STEAM.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2020.1726691\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2020.1726691","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Quantum GestART: identifying and applying correlations between mathematics, art, and perceptual organization
Mathematics can help analyze the arts and inspire new artwork. Mathematics can also help make transformations from one artistic medium to another, considering exceptions and choices, as well as artists' individual and unique contributions. We propose a method based on diagrammatic thinking and quantum formalism. We exploit decompositions of complex forms into a set of simple shapes, discretization of complex images, and Dirac notation, imagining a world of “prototypes” that can be connected to obtain a fine or coarse-graining approximation of a given visual image. Visual prototypes are exchanged with auditory ones, and the information (position, size) characterizing visual prototypes is connected with the information (onset, duration, loudness, pitch range) characterizing auditory prototypes. The topic is contextualized within a philosophical debate (discreteness and comparison of apparently unrelated objects), it develops through mathematical formalism, and it leads to programming, to spark interdisciplinary thinking and ignite creativity within STEAM.
期刊介绍:
Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.