与超斐波那契数和超卢卡斯数相关的杂交种

Efruz Özlem Mersin
{"title":"与超斐波那契数和超卢卡斯数相关的杂交种","authors":"Efruz Özlem Mersin","doi":"10.30931/jetas.1196595","DOIUrl":null,"url":null,"abstract":"Hybrid numbers which are accepted as a generalization of complex, hyperbolic and dual numbers, have attracted the attention of many researchers recently. In this paper, hybrinomials related to hyper-Fibonacci and hyper-Lucas numbers are defined. Then some algebraic and combinatoric properties of these hybrinomials are examined such as the recurrence relations, summation formulas and generation functions. Additionally, hybrid hyper-Fibonacci and hybrid hyper-Lucas numbers are defined by using the hybrinomials related to hyper-Fibonacci and hyper-Lucas numbers.","PeriodicalId":7757,"journal":{"name":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","volume":"238 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrinomials related to hyper-Fibonacci and hyper-Lucas numbers\",\"authors\":\"Efruz Özlem Mersin\",\"doi\":\"10.30931/jetas.1196595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid numbers which are accepted as a generalization of complex, hyperbolic and dual numbers, have attracted the attention of many researchers recently. In this paper, hybrinomials related to hyper-Fibonacci and hyper-Lucas numbers are defined. Then some algebraic and combinatoric properties of these hybrinomials are examined such as the recurrence relations, summation formulas and generation functions. Additionally, hybrid hyper-Fibonacci and hybrid hyper-Lucas numbers are defined by using the hybrinomials related to hyper-Fibonacci and hyper-Lucas numbers.\",\"PeriodicalId\":7757,\"journal\":{\"name\":\"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering\",\"volume\":\"238 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30931/jetas.1196595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30931/jetas.1196595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

混合数作为复数、双曲数和对偶数的一种推广,近年来引起了许多研究者的关注。本文定义了与超斐波那契数和超卢卡斯数相关的杂交项。然后研究了这些杂交项的递归关系、求和公式和生成函数等代数和组合性质。此外,使用与超斐波那契数和超卢卡斯数相关的杂交项来定义混合超斐波那契数和混合超卢卡斯数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrinomials related to hyper-Fibonacci and hyper-Lucas numbers
Hybrid numbers which are accepted as a generalization of complex, hyperbolic and dual numbers, have attracted the attention of many researchers recently. In this paper, hybrinomials related to hyper-Fibonacci and hyper-Lucas numbers are defined. Then some algebraic and combinatoric properties of these hybrinomials are examined such as the recurrence relations, summation formulas and generation functions. Additionally, hybrid hyper-Fibonacci and hybrid hyper-Lucas numbers are defined by using the hybrinomials related to hyper-Fibonacci and hyper-Lucas numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信