指屈肌短利用弹性应变能,以促进工作的产生和能量的吸收在脚下

Ross E Smith, G. Lichtwark, L. Kelly
{"title":"指屈肌短利用弹性应变能,以促进工作的产生和能量的吸收在脚下","authors":"Ross E Smith, G. Lichtwark, L. Kelly","doi":"10.1242/jeb.243792","DOIUrl":null,"url":null,"abstract":"ABSTRACT The central nervous system utilizes tendon compliance of the intrinsic foot muscles to aid the foot's arch spring, storing and returning energy in its tendinous tissues. Recently, the intrinsic foot muscles have been shown to adapt their energetic contributions during a variety of locomotor tasks to fulfil centre of mass work demands. However, the mechanism by which the small intrinsic foot muscles are able to make versatile energetic contributions remains unknown. Therefore, we examined the muscle–tendon dynamics of the flexor digitorum brevis during stepping, jumping and landing tasks to see whether the central nervous system regulates muscle activation magnitude and timing to enable energy storage and return to enhance energetic contributions. In step-ups and jumps, energy was stored in the tendinous tissue during arch compression; during arch recoil, the fascicles shortened at a slower rate than the tendinous tissues while the foot generated energy. In step-downs and landings, the tendinous tissues elongated more and at greater rates than the fascicles during arch compression while the foot absorbed energy. These results indicate that the central nervous system utilizes arch compression to store elastic energy in the tendinous tissues of the intrinsic foot muscles to add or remove mechanical energy when the body accelerates or decelerates. This study provides evidence for an adaptive mechanism to enable the foot's energetic versatility and further indicates the value of tendon compliance in distal lower limb muscle–tendon units in locomotion.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Flexor digitorum brevis utilizes elastic strain energy to contribute to both work generation and energy absorption at the foot\",\"authors\":\"Ross E Smith, G. Lichtwark, L. Kelly\",\"doi\":\"10.1242/jeb.243792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The central nervous system utilizes tendon compliance of the intrinsic foot muscles to aid the foot's arch spring, storing and returning energy in its tendinous tissues. Recently, the intrinsic foot muscles have been shown to adapt their energetic contributions during a variety of locomotor tasks to fulfil centre of mass work demands. However, the mechanism by which the small intrinsic foot muscles are able to make versatile energetic contributions remains unknown. Therefore, we examined the muscle–tendon dynamics of the flexor digitorum brevis during stepping, jumping and landing tasks to see whether the central nervous system regulates muscle activation magnitude and timing to enable energy storage and return to enhance energetic contributions. In step-ups and jumps, energy was stored in the tendinous tissue during arch compression; during arch recoil, the fascicles shortened at a slower rate than the tendinous tissues while the foot generated energy. In step-downs and landings, the tendinous tissues elongated more and at greater rates than the fascicles during arch compression while the foot absorbed energy. These results indicate that the central nervous system utilizes arch compression to store elastic energy in the tendinous tissues of the intrinsic foot muscles to add or remove mechanical energy when the body accelerates or decelerates. This study provides evidence for an adaptive mechanism to enable the foot's energetic versatility and further indicates the value of tendon compliance in distal lower limb muscle–tendon units in locomotion.\",\"PeriodicalId\":22458,\"journal\":{\"name\":\"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.243792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1242/jeb.243792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

中枢神经系统利用足部固有肌肉的肌腱顺应性来帮助足弓弹簧,在其肌腱组织中储存和返回能量。最近,内在足部肌肉已被证明在各种运动任务中适应其能量贡献,以满足大量工作的中心需求。然而,小的内在足部肌肉能够做出多种能量贡献的机制尚不清楚。因此,我们检查了指屈肌短肌腱在踏步、跳跃和着陆任务中的肌肉-肌腱动力学,以了解中枢神经系统是否调节肌肉激活的幅度和时间,以实现能量的储存和返回,以增强能量的贡献。在步进和跳跃中,弓受压时能量储存在肌腱组织中;在足弓后坐力过程中,当足部产生能量时,肌束的缩短速度比肌腱组织慢。在降压和落地过程中,足弓压缩时,肌腱组织比肌束拉长得更多,速度更快,而足部吸收能量。这些结果表明,当身体加速或减速时,中枢神经系统利用足弓压缩将弹性能量储存在足部内在肌肉的肌腱组织中,以增加或减少机械能。这项研究为一种适应性机制提供了证据,使足的能量多功能性得以实现,并进一步表明了下肢远端肌肉-肌腱单元在运动中的肌腱顺应性的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexor digitorum brevis utilizes elastic strain energy to contribute to both work generation and energy absorption at the foot
ABSTRACT The central nervous system utilizes tendon compliance of the intrinsic foot muscles to aid the foot's arch spring, storing and returning energy in its tendinous tissues. Recently, the intrinsic foot muscles have been shown to adapt their energetic contributions during a variety of locomotor tasks to fulfil centre of mass work demands. However, the mechanism by which the small intrinsic foot muscles are able to make versatile energetic contributions remains unknown. Therefore, we examined the muscle–tendon dynamics of the flexor digitorum brevis during stepping, jumping and landing tasks to see whether the central nervous system regulates muscle activation magnitude and timing to enable energy storage and return to enhance energetic contributions. In step-ups and jumps, energy was stored in the tendinous tissue during arch compression; during arch recoil, the fascicles shortened at a slower rate than the tendinous tissues while the foot generated energy. In step-downs and landings, the tendinous tissues elongated more and at greater rates than the fascicles during arch compression while the foot absorbed energy. These results indicate that the central nervous system utilizes arch compression to store elastic energy in the tendinous tissues of the intrinsic foot muscles to add or remove mechanical energy when the body accelerates or decelerates. This study provides evidence for an adaptive mechanism to enable the foot's energetic versatility and further indicates the value of tendon compliance in distal lower limb muscle–tendon units in locomotion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信