SurvMetrics:一个R软件包,用于生存分析中的预测评估指标

R J. Pub Date : 2023-02-10 DOI:10.32614/rj-2023-009
Hanpu Zhou, Hong Wang, Sizheng Wang, Yi Zou
{"title":"SurvMetrics:一个R软件包,用于生存分析中的预测评估指标","authors":"Hanpu Zhou, Hong Wang, Sizheng Wang, Yi Zou","doi":"10.32614/rj-2023-009","DOIUrl":null,"url":null,"abstract":"Recently, survival models have found vast applications in biostatistics, bioinformatics, reliability engineering, finance and related fields. But there are few R packages focusing on evaluating the predictive power of survival models. This lack of handy software on evaluating survival predictions hinders further applications of survival analysis for practitioners. In this research, we want to fill this gap by providing an \"all-in-one\" R package which implements most predictive evaluation metrics in survival analysis. In the proposed SurvMetrics R package, we implement concordance index for both untied and tied survival data; we give a new calculation process of Brier score and integrated Brier score; we also extend the applicability of integrated absolute error and integrated square error for real data. For models that can output survival time predictions, a simplified metric called mean absolute error is also implemented. In addition, we test the effectiveness of all these metrics on simulated and real survival data sets. The newly developed SurvMetrics R package is available on CRAN at https://CRAN.R-project.org/package=SurvMetrics and GitHub at https://github.com/skyee1/SurvMetrics .","PeriodicalId":20974,"journal":{"name":"R J.","volume":"2 1","pages":"252-263"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis\",\"authors\":\"Hanpu Zhou, Hong Wang, Sizheng Wang, Yi Zou\",\"doi\":\"10.32614/rj-2023-009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, survival models have found vast applications in biostatistics, bioinformatics, reliability engineering, finance and related fields. But there are few R packages focusing on evaluating the predictive power of survival models. This lack of handy software on evaluating survival predictions hinders further applications of survival analysis for practitioners. In this research, we want to fill this gap by providing an \\\"all-in-one\\\" R package which implements most predictive evaluation metrics in survival analysis. In the proposed SurvMetrics R package, we implement concordance index for both untied and tied survival data; we give a new calculation process of Brier score and integrated Brier score; we also extend the applicability of integrated absolute error and integrated square error for real data. For models that can output survival time predictions, a simplified metric called mean absolute error is also implemented. In addition, we test the effectiveness of all these metrics on simulated and real survival data sets. The newly developed SurvMetrics R package is available on CRAN at https://CRAN.R-project.org/package=SurvMetrics and GitHub at https://github.com/skyee1/SurvMetrics .\",\"PeriodicalId\":20974,\"journal\":{\"name\":\"R J.\",\"volume\":\"2 1\",\"pages\":\"252-263\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,生存模型在生物统计学、生物信息学、可靠性工程、金融等领域得到了广泛的应用。但是很少有R包专注于评估生存模型的预测能力。在评估生存预测方面缺乏方便的软件阻碍了从业者生存分析的进一步应用。在这项研究中,我们希望通过提供一个“一体化”的R软件包来填补这一空白,该软件包在生存分析中实现了最具预测性的评估指标。在拟议的SurvMetrics R包中,我们为未绑定和绑定的生存数据实现了一致性索引;给出了新的Brier分数和综合Brier分数的计算方法;同时也推广了积分绝对误差和积分平方误差在实际数据中的适用性。对于可以输出生存时间预测的模型,还实现了一个称为平均绝对误差的简化度量。此外,我们在模拟和真实生存数据集上测试了所有这些指标的有效性。新开发的SurvMetrics R包可在CRAN (https://CRAN.R-project.org/package=SurvMetrics)和GitHub (https://github.com/skyee1/SurvMetrics)上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis
Recently, survival models have found vast applications in biostatistics, bioinformatics, reliability engineering, finance and related fields. But there are few R packages focusing on evaluating the predictive power of survival models. This lack of handy software on evaluating survival predictions hinders further applications of survival analysis for practitioners. In this research, we want to fill this gap by providing an "all-in-one" R package which implements most predictive evaluation metrics in survival analysis. In the proposed SurvMetrics R package, we implement concordance index for both untied and tied survival data; we give a new calculation process of Brier score and integrated Brier score; we also extend the applicability of integrated absolute error and integrated square error for real data. For models that can output survival time predictions, a simplified metric called mean absolute error is also implemented. In addition, we test the effectiveness of all these metrics on simulated and real survival data sets. The newly developed SurvMetrics R package is available on CRAN at https://CRAN.R-project.org/package=SurvMetrics and GitHub at https://github.com/skyee1/SurvMetrics .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信