{"title":"Tab2KG:使用轻量级语义配置文件的语义表解释","authors":"Simon Gottschalk, Elena Demidova","doi":"10.3233/SW-222993","DOIUrl":null,"url":null,"abstract":"Tabular data plays an essential role in many data analytics and machine learning tasks. Typically, tabular data does not possess any machine-readable semantics. In this context, semantic table interpretation is crucial for making data analytics workflows more robust and explainable. This article proposes Tab2KG – a novel method that targets at the interpretation of tables with previously unseen data and automatically infers their semantics to transform them into semantic data graphs. We introduce original lightweight semantic profiles that enrich a domain ontology’s concepts and relations and represent domain and table characteristics. We propose a one-shot learning approach that relies on these profiles to map a tabular dataset containing previously unseen instances to a domain ontology. In contrast to the existing semantic table interpretation approaches, Tab2KG relies on the semantic profiles only and does not require any instance lookup. This property makes Tab2KG particularly suitable in the data analytics context, in which data tables typically contain new instances. Our experimental evaluation on several real-world datasets from different application domains demonstrates that Tab2KG outperforms state-of-the-art semantic table interpretation baselines.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"115 1","pages":"571-597"},"PeriodicalIF":3.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tab2KG: Semantic table interpretation with lightweight semantic profiles\",\"authors\":\"Simon Gottschalk, Elena Demidova\",\"doi\":\"10.3233/SW-222993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tabular data plays an essential role in many data analytics and machine learning tasks. Typically, tabular data does not possess any machine-readable semantics. In this context, semantic table interpretation is crucial for making data analytics workflows more robust and explainable. This article proposes Tab2KG – a novel method that targets at the interpretation of tables with previously unseen data and automatically infers their semantics to transform them into semantic data graphs. We introduce original lightweight semantic profiles that enrich a domain ontology’s concepts and relations and represent domain and table characteristics. We propose a one-shot learning approach that relies on these profiles to map a tabular dataset containing previously unseen instances to a domain ontology. In contrast to the existing semantic table interpretation approaches, Tab2KG relies on the semantic profiles only and does not require any instance lookup. This property makes Tab2KG particularly suitable in the data analytics context, in which data tables typically contain new instances. Our experimental evaluation on several real-world datasets from different application domains demonstrates that Tab2KG outperforms state-of-the-art semantic table interpretation baselines.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"115 1\",\"pages\":\"571-597\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/SW-222993\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/SW-222993","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Tab2KG: Semantic table interpretation with lightweight semantic profiles
Tabular data plays an essential role in many data analytics and machine learning tasks. Typically, tabular data does not possess any machine-readable semantics. In this context, semantic table interpretation is crucial for making data analytics workflows more robust and explainable. This article proposes Tab2KG – a novel method that targets at the interpretation of tables with previously unseen data and automatically infers their semantics to transform them into semantic data graphs. We introduce original lightweight semantic profiles that enrich a domain ontology’s concepts and relations and represent domain and table characteristics. We propose a one-shot learning approach that relies on these profiles to map a tabular dataset containing previously unseen instances to a domain ontology. In contrast to the existing semantic table interpretation approaches, Tab2KG relies on the semantic profiles only and does not require any instance lookup. This property makes Tab2KG particularly suitable in the data analytics context, in which data tables typically contain new instances. Our experimental evaluation on several real-world datasets from different application domains demonstrates that Tab2KG outperforms state-of-the-art semantic table interpretation baselines.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.