在基于云的在线社交网络中保护用户数据的安全和隐私保护方法

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Neelu Khare, Xia Xie, Jin Huang, Song Wu, Hai Jin, Melvin Koh, Jie Song, Shanshan Yu, Jindian Su, Pengfei Li
{"title":"在基于云的在线社交网络中保护用户数据的安全和隐私保护方法","authors":"Neelu Khare, Xia Xie, Jin Huang, Song Wu, Hai Jin, Melvin Koh, Jie Song, Shanshan Yu, Jindian Su, Pengfei Li","doi":"10.4018/IJGHPC.2020040101","DOIUrl":null,"url":null,"abstract":"The tremendous growth of social networking systems enables the active participation of a wide variety of users. This has led to an increased probability of security and privacy concerns. In order to solve the issue, the article defines a secure and privacy-preserving approach to protect user data across Cloud-based online social networks. The proposed approach models social networks as a directed graph, such that a user can share sensitive information with other users only if there exists a directed edge from one user to another. The connectivity between data users data is efficiently shared using an attribute-based encryption (ABE) with different data access levels. The proposed ABE technique makes use of a trapdoor function to re-encrypt the data without the use of proxy re-encryption techniques. Experimental evaluation states that the proposed approach provides comparatively better results than the existing techniques.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"1 1","pages":"1-24"},"PeriodicalIF":0.6000,"publicationDate":"2020-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Secure and Privacy-Preserving Approach to Protect User Data across Cloud based Online Social Networks\",\"authors\":\"Neelu Khare, Xia Xie, Jin Huang, Song Wu, Hai Jin, Melvin Koh, Jie Song, Shanshan Yu, Jindian Su, Pengfei Li\",\"doi\":\"10.4018/IJGHPC.2020040101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tremendous growth of social networking systems enables the active participation of a wide variety of users. This has led to an increased probability of security and privacy concerns. In order to solve the issue, the article defines a secure and privacy-preserving approach to protect user data across Cloud-based online social networks. The proposed approach models social networks as a directed graph, such that a user can share sensitive information with other users only if there exists a directed edge from one user to another. The connectivity between data users data is efficiently shared using an attribute-based encryption (ABE) with different data access levels. The proposed ABE technique makes use of a trapdoor function to re-encrypt the data without the use of proxy re-encryption techniques. Experimental evaluation states that the proposed approach provides comparatively better results than the existing techniques.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"1 1\",\"pages\":\"1-24\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJGHPC.2020040101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGHPC.2020040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

社会网络系统的巨大增长使各种各样的用户能够积极参与。这增加了人们对安全和隐私问题的担忧。为了解决这个问题,本文定义了一种安全且保护隐私的方法来保护基于云的在线社交网络中的用户数据。提出的方法将社交网络建模为一个有向图,这样一个用户只有在从一个用户到另一个用户之间存在有向边时才能与其他用户共享敏感信息。数据用户之间的连接使用基于属性的加密(ABE)有效地共享不同数据访问级别的数据。提出的ABE技术利用trapdoor函数对数据进行重加密,而不使用代理重加密技术。实验评价表明,该方法比现有的技术提供了相对更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Secure and Privacy-Preserving Approach to Protect User Data across Cloud based Online Social Networks
The tremendous growth of social networking systems enables the active participation of a wide variety of users. This has led to an increased probability of security and privacy concerns. In order to solve the issue, the article defines a secure and privacy-preserving approach to protect user data across Cloud-based online social networks. The proposed approach models social networks as a directed graph, such that a user can share sensitive information with other users only if there exists a directed edge from one user to another. The connectivity between data users data is efficiently shared using an attribute-based encryption (ABE) with different data access levels. The proposed ABE technique makes use of a trapdoor function to re-encrypt the data without the use of proxy re-encryption techniques. Experimental evaluation states that the proposed approach provides comparatively better results than the existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信