开源统计软件(OSSS)及其数据处理功能综述

Q4 Computer Science
G. Niu, R. Segall, Zichen Zhao, Zhijian Wu
{"title":"开源统计软件(OSSS)及其数据处理功能综述","authors":"G. Niu, R. Segall, Zichen Zhao, Zhijian Wu","doi":"10.4018/IJOSSP.2021010101","DOIUrl":null,"url":null,"abstract":"This paper discusses the definitions of open source software, free software and freeware, and the concept of big data. The authors then introduce R and Python as the two most popular open source statistical software (OSSS). Additional OSSS, such as JASP, PSPP, GRETL, SOFA Statistics, Octave, KNIME, and Scilab, are also introduced in this paper with function descriptions and modeling examples. They further discuss OSSS's capability in artificial intelligence application and modeling and Popular OSSS-based machine learning libraries and systems. The paper intends to provide a reference for readers to make proper selections of open source software when statistical analysis tasks are needed. In addition, working platform and selective numerical, descriptive and analysis examples are provided for each software. Readers could have a direct and in-depth understanding of each software and its functional highlights.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"47 1","pages":"1-20"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Open Source Statistical Software (OSSS) and Their Data Processing Functionalities\",\"authors\":\"G. Niu, R. Segall, Zichen Zhao, Zhijian Wu\",\"doi\":\"10.4018/IJOSSP.2021010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the definitions of open source software, free software and freeware, and the concept of big data. The authors then introduce R and Python as the two most popular open source statistical software (OSSS). Additional OSSS, such as JASP, PSPP, GRETL, SOFA Statistics, Octave, KNIME, and Scilab, are also introduced in this paper with function descriptions and modeling examples. They further discuss OSSS's capability in artificial intelligence application and modeling and Popular OSSS-based machine learning libraries and systems. The paper intends to provide a reference for readers to make proper selections of open source software when statistical analysis tasks are needed. In addition, working platform and selective numerical, descriptive and analysis examples are provided for each software. Readers could have a direct and in-depth understanding of each software and its functional highlights.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"47 1\",\"pages\":\"1-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJOSSP.2021010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2021010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了开源软件、免费软件和免费软件的定义,以及大数据的概念。作者随后介绍了R和Python这两种最流行的开源统计软件(OSSS)。本文还介绍了其他OSSS,如JASP、PSPP、GRETL、SOFA Statistics、Octave、KNIME和Scilab,并给出了功能描述和建模示例。他们进一步讨论了OSSS在人工智能应用和建模方面的能力,以及基于OSSS的流行机器学习库和系统。本文旨在为读者在进行统计分析任务时正确选择开源软件提供参考。此外,还提供了各软件的工作平台和精选的数值、描述和分析实例。读者可以对每个软件及其功能亮点有一个直接而深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey of Open Source Statistical Software (OSSS) and Their Data Processing Functionalities
This paper discusses the definitions of open source software, free software and freeware, and the concept of big data. The authors then introduce R and Python as the two most popular open source statistical software (OSSS). Additional OSSS, such as JASP, PSPP, GRETL, SOFA Statistics, Octave, KNIME, and Scilab, are also introduced in this paper with function descriptions and modeling examples. They further discuss OSSS's capability in artificial intelligence application and modeling and Popular OSSS-based machine learning libraries and systems. The paper intends to provide a reference for readers to make proper selections of open source software when statistical analysis tasks are needed. In addition, working platform and selective numerical, descriptive and analysis examples are provided for each software. Readers could have a direct and in-depth understanding of each software and its functional highlights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信