蒙特卡罗树搜索的非渐近分析

Oper. Res. Pub Date : 2022-03-01 DOI:10.1287/opre.2021.2239
D. Shah, Qiaomin Xie, Zhi Xu
{"title":"蒙特卡罗树搜索的非渐近分析","authors":"D. Shah, Qiaomin Xie, Zhi Xu","doi":"10.1287/opre.2021.2239","DOIUrl":null,"url":null,"abstract":"In “Nonasymptotic Analysis of Monte Carlo Tree Search,” D. Shah, Q. Xie, and Z. Xu consider the popular tree-based search strategy, the Monte Carlo Tree Search (MCTS), in the context of the infinite-horizon discounted Markov decision process. They show that MCTS with an appropriate polynomial rather than logarithmic bonus term indeed leads to the desired convergence property. The authors derive the results by establishing a polynomial concentration property of regret for a class of nonstationary multiarm bandits. Furthermore, using this as a building block, they demonstrate that MCTS, combined with nearest neighbor supervised learning, acts as a “policy improvement” operator that can iteratively improve value function approximation.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"23 1","pages":"3234-3260"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Nonasymptotic Analysis of Monte Carlo Tree Search\",\"authors\":\"D. Shah, Qiaomin Xie, Zhi Xu\",\"doi\":\"10.1287/opre.2021.2239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In “Nonasymptotic Analysis of Monte Carlo Tree Search,” D. Shah, Q. Xie, and Z. Xu consider the popular tree-based search strategy, the Monte Carlo Tree Search (MCTS), in the context of the infinite-horizon discounted Markov decision process. They show that MCTS with an appropriate polynomial rather than logarithmic bonus term indeed leads to the desired convergence property. The authors derive the results by establishing a polynomial concentration property of regret for a class of nonstationary multiarm bandits. Furthermore, using this as a building block, they demonstrate that MCTS, combined with nearest neighbor supervised learning, acts as a “policy improvement” operator that can iteratively improve value function approximation.\",\"PeriodicalId\":19546,\"journal\":{\"name\":\"Oper. Res.\",\"volume\":\"23 1\",\"pages\":\"3234-3260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2021.2239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2021.2239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在“蒙特卡罗树搜索的非渐近分析”中,D. Shah, Q. Xie和Z. Xu在无限视界贴现马尔可夫决策过程的背景下考虑了流行的基于树的搜索策略,蒙特卡罗树搜索(MCTS)。结果表明,采用适当的多项式而不是对数加成项的MCTS确实能得到理想的收敛性。对一类非平稳多臂强盗,建立了后悔的多项式集中性质,得到了结果。此外,他们将此作为构建块,证明MCTS与最近邻监督学习相结合,作为一种“策略改进”算子,可以迭代地改进值函数近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonasymptotic Analysis of Monte Carlo Tree Search
In “Nonasymptotic Analysis of Monte Carlo Tree Search,” D. Shah, Q. Xie, and Z. Xu consider the popular tree-based search strategy, the Monte Carlo Tree Search (MCTS), in the context of the infinite-horizon discounted Markov decision process. They show that MCTS with an appropriate polynomial rather than logarithmic bonus term indeed leads to the desired convergence property. The authors derive the results by establishing a polynomial concentration property of regret for a class of nonstationary multiarm bandits. Furthermore, using this as a building block, they demonstrate that MCTS, combined with nearest neighbor supervised learning, acts as a “policy improvement” operator that can iteratively improve value function approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信