玩具脱屑模型的结果与猜想

B. Derrida, Zhan Shi
{"title":"玩具脱屑模型的结果与猜想","authors":"B. Derrida, Zhan Shi","doi":"10.17323/1609-4514-2020-20-4-695-709","DOIUrl":null,"url":null,"abstract":"We review recent results and conjectures for a simplified version of the depinning problem in presence of disorder which was introduced by Derrida and Retaux in 2014. For this toy model, the depinning transition has been predicted to be of the Berezinskii--Kosterlitz--Thouless type. Here we discuss under which integrability conditions this prediction can be proved and how it is modified otherwise.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Results and Conjectures on a Toy Model of Depinning\",\"authors\":\"B. Derrida, Zhan Shi\",\"doi\":\"10.17323/1609-4514-2020-20-4-695-709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review recent results and conjectures for a simplified version of the depinning problem in presence of disorder which was introduced by Derrida and Retaux in 2014. For this toy model, the depinning transition has been predicted to be of the Berezinskii--Kosterlitz--Thouless type. Here we discuss under which integrability conditions this prediction can be proved and how it is modified otherwise.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2020-20-4-695-709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17323/1609-4514-2020-20-4-695-709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们回顾了德里达和雷托在2014年提出的存在障碍的脱皮问题的简化版本的最新结果和猜想。对于这个玩具模型,蜕皮转变被预测为Berezinskii- Kosterlitz- Thouless型。本文讨论了在哪些可积条件下可以证明该预测,以及如何对其进行修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Results and Conjectures on a Toy Model of Depinning
We review recent results and conjectures for a simplified version of the depinning problem in presence of disorder which was introduced by Derrida and Retaux in 2014. For this toy model, the depinning transition has been predicted to be of the Berezinskii--Kosterlitz--Thouless type. Here we discuss under which integrability conditions this prediction can be proved and how it is modified otherwise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信