非齐次泊松过程周期函数与幂趋势函数乘积强度渐近正态性的数值模拟

Ikhsan Maulidi, M. Ihsan, V. Apriliani
{"title":"非齐次泊松过程周期函数与幂趋势函数乘积强度渐近正态性的数值模拟","authors":"Ikhsan Maulidi, M. Ihsan, V. Apriliani","doi":"10.24042/DJM.V3I3.6374","DOIUrl":null,"url":null,"abstract":"In this article, we provided a numerical simulation for asymptotic normality of a kernel type estimator for the intensity obtained as a product of a periodic function with the power trend function of a nonhomogeneous Poisson Process. The aim of this simulation is to observe how convergence the variance and bias of the estimator. The simulation shows that the larger the value of power function in intensity function, it is required the length of the observation interval to obtain the convergent of the estimator.","PeriodicalId":11442,"journal":{"name":"Dwight's Journal of Music","volume":"3 1","pages":"271-278"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson Process\",\"authors\":\"Ikhsan Maulidi, M. Ihsan, V. Apriliani\",\"doi\":\"10.24042/DJM.V3I3.6374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we provided a numerical simulation for asymptotic normality of a kernel type estimator for the intensity obtained as a product of a periodic function with the power trend function of a nonhomogeneous Poisson Process. The aim of this simulation is to observe how convergence the variance and bias of the estimator. The simulation shows that the larger the value of power function in intensity function, it is required the length of the observation interval to obtain the convergent of the estimator.\",\"PeriodicalId\":11442,\"journal\":{\"name\":\"Dwight's Journal of Music\",\"volume\":\"3 1\",\"pages\":\"271-278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dwight's Journal of Music\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24042/DJM.V3I3.6374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dwight's Journal of Music","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24042/DJM.V3I3.6374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了非齐次泊松过程的周期函数与幂趋势函数乘积的核型估计的渐近正态性的数值模拟。这个模拟的目的是观察如何收敛方差和偏差的估计。仿真结果表明,强度函数中幂函数的值越大,估计量的收敛性要求观测区间的长度越长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson Process
In this article, we provided a numerical simulation for asymptotic normality of a kernel type estimator for the intensity obtained as a product of a periodic function with the power trend function of a nonhomogeneous Poisson Process. The aim of this simulation is to observe how convergence the variance and bias of the estimator. The simulation shows that the larger the value of power function in intensity function, it is required the length of the observation interval to obtain the convergent of the estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信