棘手集多项式核的密度和复杂度

Q4 Mathematics
Pekka Orponen, Uwe Schöning
{"title":"棘手集多项式核的密度和复杂度","authors":"Pekka Orponen,&nbsp;Uwe Schöning","doi":"10.1016/S0019-9958(86)80024-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>A</em> be a recursive problem not in <em>P</em>. Lynch has shown that <em>A</em> then has an infinite recursive <em>polynomial complexity core</em>. This is a collection <em>C</em> of instances of <em>A</em> such that every algorithm deciding <em>A</em> needs more than polynomial time almost everywhere on <em>C</em>. We investigate the complexity of recognizing the instances in such a core, and show that every recursive problem <em>A</em> not in <em>P</em> has an infinite core recognizable in subexponential time. We further study how dense the core sets for <em>A</em> can be, under various assumptions about the structure of <em>A</em>. Our main results in this direction are that if <em>P</em> ≠ <em>NP</em>, then <em>NP</em>-complete problems have polynomially nonsparse cores recognizable in subexponential time, and that EXPTIME-complete problems have cores of exponential density recognizable in exponential time.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":"70 1","pages":"Pages 54-68"},"PeriodicalIF":0.0000,"publicationDate":"1986-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80024-9","citationCount":"46","resultStr":"{\"title\":\"The density and complexity of polynomial cores for intractable sets\",\"authors\":\"Pekka Orponen,&nbsp;Uwe Schöning\",\"doi\":\"10.1016/S0019-9958(86)80024-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>A</em> be a recursive problem not in <em>P</em>. Lynch has shown that <em>A</em> then has an infinite recursive <em>polynomial complexity core</em>. This is a collection <em>C</em> of instances of <em>A</em> such that every algorithm deciding <em>A</em> needs more than polynomial time almost everywhere on <em>C</em>. We investigate the complexity of recognizing the instances in such a core, and show that every recursive problem <em>A</em> not in <em>P</em> has an infinite core recognizable in subexponential time. We further study how dense the core sets for <em>A</em> can be, under various assumptions about the structure of <em>A</em>. Our main results in this direction are that if <em>P</em> ≠ <em>NP</em>, then <em>NP</em>-complete problems have polynomially nonsparse cores recognizable in subexponential time, and that EXPTIME-complete problems have cores of exponential density recognizable in exponential time.</p></div>\",\"PeriodicalId\":38164,\"journal\":{\"name\":\"信息与控制\",\"volume\":\"70 1\",\"pages\":\"Pages 54-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80024-9\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息与控制\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019995886800249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995886800249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 46

摘要

设A是一个不在p中的递归问题,Lynch证明了A有一个无限递归多项式复杂度核。这是a的实例集合C,使得几乎在C上任何地方决定a的算法都需要超过多项式的时间。我们研究了在这样一个核中识别实例的复杂性,并证明了不在P中的每个递归问题a都有一个在次指数时间内可识别的无限核。我们进一步研究了在关于A结构的各种假设下,A的核集的密度。我们在这个方向上的主要结果是,如果P≠NP,那么NP完全问题具有在次指数时间内可识别的多项式非稀疏核,exptime完全问题具有在指数时间内可识别的指数密度核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The density and complexity of polynomial cores for intractable sets

Let A be a recursive problem not in P. Lynch has shown that A then has an infinite recursive polynomial complexity core. This is a collection C of instances of A such that every algorithm deciding A needs more than polynomial time almost everywhere on C. We investigate the complexity of recognizing the instances in such a core, and show that every recursive problem A not in P has an infinite core recognizable in subexponential time. We further study how dense the core sets for A can be, under various assumptions about the structure of A. Our main results in this direction are that if PNP, then NP-complete problems have polynomially nonsparse cores recognizable in subexponential time, and that EXPTIME-complete problems have cores of exponential density recognizable in exponential time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
信息与控制
信息与控制 Mathematics-Control and Optimization
CiteScore
1.50
自引率
0.00%
发文量
4623
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信