{"title":"无损任意折射率光捕获和微操作中的光力","authors":"Leonardo A. Ambrosio, Hugo E. Hernández-Figueroa","doi":"10.1016/j.metmat.2012.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper shows, using both a ray optics approach and in the framework of the generalized Lorenz–Mie theory (GLMT), what happens to the optical forces exerted on a lossless spherical particle with an arbitrary (positive or negative) relative refractive index, allowing the external medium also to be metamaterial. It is shown that the anti-parallelism between the linear momentum <strong>p</strong> of each photon and the Poynting vector <strong>S</strong> associated with the propagating wave, observed in negative refractive index media, leads to shifts in the direction of the optical force of a single ray and, consequently, to the total optical force exerted by an arbitrary-shaped laser beam. This extends the possible realizable traps and reveals how arbitrary-shaped laser beams can be used to trap particles with arbitrary refractive indices.</p></div>","PeriodicalId":100920,"journal":{"name":"Metamaterials","volume":"6 1","pages":"Pages 51-63"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.metmat.2012.09.001","citationCount":"3","resultStr":"{\"title\":\"Optical forces in lossless arbitrary refractive index optical trapping and micromanipulation\",\"authors\":\"Leonardo A. Ambrosio, Hugo E. Hernández-Figueroa\",\"doi\":\"10.1016/j.metmat.2012.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper shows, using both a ray optics approach and in the framework of the generalized Lorenz–Mie theory (GLMT), what happens to the optical forces exerted on a lossless spherical particle with an arbitrary (positive or negative) relative refractive index, allowing the external medium also to be metamaterial. It is shown that the anti-parallelism between the linear momentum <strong>p</strong> of each photon and the Poynting vector <strong>S</strong> associated with the propagating wave, observed in negative refractive index media, leads to shifts in the direction of the optical force of a single ray and, consequently, to the total optical force exerted by an arbitrary-shaped laser beam. This extends the possible realizable traps and reveals how arbitrary-shaped laser beams can be used to trap particles with arbitrary refractive indices.</p></div>\",\"PeriodicalId\":100920,\"journal\":{\"name\":\"Metamaterials\",\"volume\":\"6 1\",\"pages\":\"Pages 51-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.metmat.2012.09.001\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metamaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873198812000047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873198812000047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical forces in lossless arbitrary refractive index optical trapping and micromanipulation
This paper shows, using both a ray optics approach and in the framework of the generalized Lorenz–Mie theory (GLMT), what happens to the optical forces exerted on a lossless spherical particle with an arbitrary (positive or negative) relative refractive index, allowing the external medium also to be metamaterial. It is shown that the anti-parallelism between the linear momentum p of each photon and the Poynting vector S associated with the propagating wave, observed in negative refractive index media, leads to shifts in the direction of the optical force of a single ray and, consequently, to the total optical force exerted by an arbitrary-shaped laser beam. This extends the possible realizable traps and reveals how arbitrary-shaped laser beams can be used to trap particles with arbitrary refractive indices.