研究了氩气中亚焦耳毛细管放电范围内的软x射线光谱和等离子体射流特性

E. Wyndham, M. Favre, G. Avaria, F. Guzman, H. Bhuyan, H. Chuaqui, S. Zakharov, P. Choi
{"title":"研究了氩气中亚焦耳毛细管放电范围内的软x射线光谱和等离子体射流特性","authors":"E. Wyndham, M. Favre, G. Avaria, F. Guzman, H. Bhuyan, H. Chuaqui, S. Zakharov, P. Choi","doi":"10.1109/PLASMA.2008.4590700","DOIUrl":null,"url":null,"abstract":"Summary form only given. We present a series of observations of a small very low inductance sub-joule capillary discharge in a variety of different geometries and under a variety of operating conditions. The plasmas emit mainly in the corresponding filling gas and whose temperature attains about 20 eV for a few nanoseconds. However under certain modes of operation the strong axial electron beam associated with transient hollow cathode mechanism guides and interacts with the pinch plasma to give intense emission from higher ionization states. The spectra presented are for operation in Argon at stored driver energies from 60 to 500 mJ and additionally show a significant dependance on the repetition rate as well as the operating pressure and pressure gradient between the hollow cathode entrance aperture and the anode exit of the capillary. Inspite of the mm diameter of the capillary bore, emission from ablated alumina wall material is minimal for some geometrical configurations conforming to theoretical modelling of the discharge. In addition the electron beam and plasma jet emanating from the anode and propagating in the partially ionized argon may be observed from its optical emission and at the lowest discharge energies may be cuantified from time resolved double Langmuir probe observations.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":"11 6 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The soft X-ray spectrum and plasma jet properties in a range of sub-joule capillary discharges operated in argon\",\"authors\":\"E. Wyndham, M. Favre, G. Avaria, F. Guzman, H. Bhuyan, H. Chuaqui, S. Zakharov, P. Choi\",\"doi\":\"10.1109/PLASMA.2008.4590700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. We present a series of observations of a small very low inductance sub-joule capillary discharge in a variety of different geometries and under a variety of operating conditions. The plasmas emit mainly in the corresponding filling gas and whose temperature attains about 20 eV for a few nanoseconds. However under certain modes of operation the strong axial electron beam associated with transient hollow cathode mechanism guides and interacts with the pinch plasma to give intense emission from higher ionization states. The spectra presented are for operation in Argon at stored driver energies from 60 to 500 mJ and additionally show a significant dependance on the repetition rate as well as the operating pressure and pressure gradient between the hollow cathode entrance aperture and the anode exit of the capillary. Inspite of the mm diameter of the capillary bore, emission from ablated alumina wall material is minimal for some geometrical configurations conforming to theoretical modelling of the discharge. In addition the electron beam and plasma jet emanating from the anode and propagating in the partially ionized argon may be observed from its optical emission and at the lowest discharge energies may be cuantified from time resolved double Langmuir probe observations.\",\"PeriodicalId\":6359,\"journal\":{\"name\":\"2008 IEEE 35th International Conference on Plasma Science\",\"volume\":\"11 6 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 35th International Conference on Plasma Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2008.4590700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 35th International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2008.4590700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。我们提出了一系列的观察一个小的非常低的电感亚焦耳毛细管放电在各种不同的几何形状和各种操作条件下。等离子体主要在相应的填充气体中发射,其温度在几纳秒内达到20 eV左右。然而,在一定的工作模式下,与瞬态空心阴极机制相关的强轴向电子束引导并与夹指等离子体相互作用,产生高电离态的强发射。所提供的光谱是在氩气中运行的,存储的驱动能量从60到500 mJ,另外还显示了重复率以及空心阴极入口孔径和毛细管阳极出口之间的操作压力和压力梯度的显著依赖性。尽管毛细管孔直径为毫米,但对于符合放电理论模型的某些几何构型,烧蚀氧化铝壁材料的发射是最小的。此外,从阳极发出并在部分电离氩中传播的电子束和等离子体射流可以从其光学发射中观察到,并且可以通过时间分辨双朗缪尔探针观测来量化最低放电能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The soft X-ray spectrum and plasma jet properties in a range of sub-joule capillary discharges operated in argon
Summary form only given. We present a series of observations of a small very low inductance sub-joule capillary discharge in a variety of different geometries and under a variety of operating conditions. The plasmas emit mainly in the corresponding filling gas and whose temperature attains about 20 eV for a few nanoseconds. However under certain modes of operation the strong axial electron beam associated with transient hollow cathode mechanism guides and interacts with the pinch plasma to give intense emission from higher ionization states. The spectra presented are for operation in Argon at stored driver energies from 60 to 500 mJ and additionally show a significant dependance on the repetition rate as well as the operating pressure and pressure gradient between the hollow cathode entrance aperture and the anode exit of the capillary. Inspite of the mm diameter of the capillary bore, emission from ablated alumina wall material is minimal for some geometrical configurations conforming to theoretical modelling of the discharge. In addition the electron beam and plasma jet emanating from the anode and propagating in the partially ionized argon may be observed from its optical emission and at the lowest discharge energies may be cuantified from time resolved double Langmuir probe observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信