Duffing振荡器的行为演化

Yonghe Chen, Zhenbiao Wei, Zhanjun Niu, Baozhan Qin
{"title":"Duffing振荡器的行为演化","authors":"Yonghe Chen, Zhenbiao Wei, Zhanjun Niu, Baozhan Qin","doi":"10.1109/IHMSC.2015.139","DOIUrl":null,"url":null,"abstract":"In this paper, the methods of random Melnikov process function are introduced to educe out the threshold of chaotic movement of non-linear system. We found that the non-Gaussian color noise effect on the chaos character of Duffing oscillator is decided by the value of parameters in the model, the non-Gaussian color noise has little effect on the system's ultimate dynamic behavior when the system is in the chaotic behavior. The tiny change of sin wave swing scope and frequency will induce the chaotic system behavior great differently, the parameters can be estimated through this change, and the numerical results confirm the conclusion that the chaotic oscillator is immune to zero mean square non-Gaussian color noise for sin wave frequency and scope parameter estimate.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"278 1","pages":"68-72"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior Evolution of Duffing Oscillator\",\"authors\":\"Yonghe Chen, Zhenbiao Wei, Zhanjun Niu, Baozhan Qin\",\"doi\":\"10.1109/IHMSC.2015.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the methods of random Melnikov process function are introduced to educe out the threshold of chaotic movement of non-linear system. We found that the non-Gaussian color noise effect on the chaos character of Duffing oscillator is decided by the value of parameters in the model, the non-Gaussian color noise has little effect on the system's ultimate dynamic behavior when the system is in the chaotic behavior. The tiny change of sin wave swing scope and frequency will induce the chaotic system behavior great differently, the parameters can be estimated through this change, and the numerical results confirm the conclusion that the chaotic oscillator is immune to zero mean square non-Gaussian color noise for sin wave frequency and scope parameter estimate.\",\"PeriodicalId\":6592,\"journal\":{\"name\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"278 1\",\"pages\":\"68-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2015.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入随机梅尔尼科夫过程函数的方法,推导出非线性系统混沌运动的阈值。研究发现,非高斯色噪声对Duffing振子混沌特性的影响是由模型中参数的取值决定的,当系统处于混沌状态时,非高斯色噪声对系统的最终动态行为影响不大。正弦波摆动范围和频率的微小变化会引起混沌系统行为的巨大变化,可以通过这种变化来估计参数,数值结果证实了混沌振荡器对正弦波摆动频率和范围参数估计具有零均方非高斯色噪声免疫的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior Evolution of Duffing Oscillator
In this paper, the methods of random Melnikov process function are introduced to educe out the threshold of chaotic movement of non-linear system. We found that the non-Gaussian color noise effect on the chaos character of Duffing oscillator is decided by the value of parameters in the model, the non-Gaussian color noise has little effect on the system's ultimate dynamic behavior when the system is in the chaotic behavior. The tiny change of sin wave swing scope and frequency will induce the chaotic system behavior great differently, the parameters can be estimated through this change, and the numerical results confirm the conclusion that the chaotic oscillator is immune to zero mean square non-Gaussian color noise for sin wave frequency and scope parameter estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信