基于改进MCMC方法的RFID数据和位置参数联合估计

Mingyi Duan, Yajun Yang, Wei Wang
{"title":"基于改进MCMC方法的RFID数据和位置参数联合估计","authors":"Mingyi Duan, Yajun Yang, Wei Wang","doi":"10.4304/jnw.9.9.2392-2401","DOIUrl":null,"url":null,"abstract":"The location parameter of the electronic tag is the necessary condition for RFID application systems to realize their operation functions. Based on RFID detection model within which the target of the symbol location will spill over to adjacent area when sampling, the posterior probability distribution of the parameters to be estimated is obtained from the conditional likelihood function and the prior distribution of unknown parameters by Bayesian theory. Metropolis-Hastings (M-H) sampling algorithm of Markov Chain Monte Carlo (MCMC) is used to jointly estimate the RFID data and tag symbol location parameter within the range of multiple readers, and in this paper, the M-H sampling is improved by considering the prior knowledge and constraints. At last, the experimental results, using large simulated data, demonstrate the accuracy and efficiency of the proposed algorithm","PeriodicalId":14643,"journal":{"name":"J. Networks","volume":"325 1","pages":"2392-2401"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An RFID Data and Location Parameter Joint Estimation Based on an Improved MCMC Method\",\"authors\":\"Mingyi Duan, Yajun Yang, Wei Wang\",\"doi\":\"10.4304/jnw.9.9.2392-2401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The location parameter of the electronic tag is the necessary condition for RFID application systems to realize their operation functions. Based on RFID detection model within which the target of the symbol location will spill over to adjacent area when sampling, the posterior probability distribution of the parameters to be estimated is obtained from the conditional likelihood function and the prior distribution of unknown parameters by Bayesian theory. Metropolis-Hastings (M-H) sampling algorithm of Markov Chain Monte Carlo (MCMC) is used to jointly estimate the RFID data and tag symbol location parameter within the range of multiple readers, and in this paper, the M-H sampling is improved by considering the prior knowledge and constraints. At last, the experimental results, using large simulated data, demonstrate the accuracy and efficiency of the proposed algorithm\",\"PeriodicalId\":14643,\"journal\":{\"name\":\"J. Networks\",\"volume\":\"325 1\",\"pages\":\"2392-2401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4304/jnw.9.9.2392-2401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4304/jnw.9.9.2392-2401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子标签的位置参数是RFID应用系统实现其运行功能的必要条件。基于采样时标识位置目标溢出到相邻区域的RFID检测模型,利用贝叶斯理论从条件似然函数和未知参数的先验分布得到待估计参数的后验概率分布。采用马尔可夫链蒙特卡罗(MCMC)的Metropolis-Hastings (M-H)采样算法对多个读写器范围内的RFID数据和标签符号位置参数进行联合估计,本文通过考虑先验知识和约束条件对M-H采样进行改进。最后,利用大型模拟数据进行了实验,验证了该算法的准确性和有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An RFID Data and Location Parameter Joint Estimation Based on an Improved MCMC Method
The location parameter of the electronic tag is the necessary condition for RFID application systems to realize their operation functions. Based on RFID detection model within which the target of the symbol location will spill over to adjacent area when sampling, the posterior probability distribution of the parameters to be estimated is obtained from the conditional likelihood function and the prior distribution of unknown parameters by Bayesian theory. Metropolis-Hastings (M-H) sampling algorithm of Markov Chain Monte Carlo (MCMC) is used to jointly estimate the RFID data and tag symbol location parameter within the range of multiple readers, and in this paper, the M-H sampling is improved by considering the prior knowledge and constraints. At last, the experimental results, using large simulated data, demonstrate the accuracy and efficiency of the proposed algorithm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信