局部到全局学习:逐渐增加训练深度神经网络的类

Hao Cheng, Dongze Lian, Bowen Deng, Shenghua Gao, T. Tan, Yanlin Geng
{"title":"局部到全局学习:逐渐增加训练深度神经网络的类","authors":"Hao Cheng, Dongze Lian, Bowen Deng, Shenghua Gao, T. Tan, Yanlin Geng","doi":"10.1109/CVPR.2019.00488","DOIUrl":null,"url":null,"abstract":"We propose a new learning paradigm, Local to Global Learning (LGL), for Deep Neural Networks (DNNs) to improve the performance of classification problems. The core of LGL is to learn a DNN model from fewer categories (local) to more categories (global) gradually within the entire training set. LGL is most related to the Self-Paced Learning (SPL) algorithm but its formulation is different from SPL. SPL trains its data from simple to complex, while LGL from local to global. In this paper, we incorporate the idea of LGL into the learning objective of DNNs and explain why LGL works better from an information-theoretic perspective. Experiments on the toy data, CIFAR-10, CIFAR-100, and ImageNet dataset show that LGL outperforms the baseline and SPL-based algorithms.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"947 1","pages":"4743-4751"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Local to Global Learning: Gradually Adding Classes for Training Deep Neural Networks\",\"authors\":\"Hao Cheng, Dongze Lian, Bowen Deng, Shenghua Gao, T. Tan, Yanlin Geng\",\"doi\":\"10.1109/CVPR.2019.00488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new learning paradigm, Local to Global Learning (LGL), for Deep Neural Networks (DNNs) to improve the performance of classification problems. The core of LGL is to learn a DNN model from fewer categories (local) to more categories (global) gradually within the entire training set. LGL is most related to the Self-Paced Learning (SPL) algorithm but its formulation is different from SPL. SPL trains its data from simple to complex, while LGL from local to global. In this paper, we incorporate the idea of LGL into the learning objective of DNNs and explain why LGL works better from an information-theoretic perspective. Experiments on the toy data, CIFAR-10, CIFAR-100, and ImageNet dataset show that LGL outperforms the baseline and SPL-based algorithms.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"947 1\",\"pages\":\"4743-4751\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了一种新的学习范式,局部到全局学习(LGL),用于深度神经网络(dnn)来提高分类问题的性能。LGL的核心是在整个训练集中,从更少的类别(局部)逐渐学习到更多的类别(全局)。LGL与自进度学习(self - pace Learning, SPL)算法关系最为密切,但其表述与自进度学习(self - pace Learning)算法不同。SPL从简单到复杂的数据训练,LGL从本地到全局的数据训练。在本文中,我们将LGL的思想融入到深度神经网络的学习目标中,并从信息论的角度解释了LGL为什么能更好地工作。在玩具数据、CIFAR-10、CIFAR-100和ImageNet数据集上的实验表明,LGL优于基线算法和基于pl的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local to Global Learning: Gradually Adding Classes for Training Deep Neural Networks
We propose a new learning paradigm, Local to Global Learning (LGL), for Deep Neural Networks (DNNs) to improve the performance of classification problems. The core of LGL is to learn a DNN model from fewer categories (local) to more categories (global) gradually within the entire training set. LGL is most related to the Self-Paced Learning (SPL) algorithm but its formulation is different from SPL. SPL trains its data from simple to complex, while LGL from local to global. In this paper, we incorporate the idea of LGL into the learning objective of DNNs and explain why LGL works better from an information-theoretic perspective. Experiments on the toy data, CIFAR-10, CIFAR-100, and ImageNet dataset show that LGL outperforms the baseline and SPL-based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信