具有未来和状态的响应并行性

Stefan K. Muller, Kyle Singer, N. Goldstein, Umut A. Acar, Kunal Agrawal, I. Lee
{"title":"具有未来和状态的响应并行性","authors":"Stefan K. Muller, Kyle Singer, N. Goldstein, Umut A. Acar, Kunal Agrawal, I. Lee","doi":"10.1145/3385412.3386013","DOIUrl":null,"url":null,"abstract":"Motivated by the increasing shift to multicore computers, recent work has developed language support for responsive parallel applications that mix compute-intensive tasks with latency-sensitive, usually interactive, tasks. These developments include calculi that allow assigning priorities to threads, type systems that can rule out priority inversions, and accompanying cost models for predicting responsiveness. These advances share one important limitation: all of this work assumes purely functional programming. This is a significant restriction, because many realistic interactive applications, from games to robots to web servers, use mutable state, e.g., for communication between threads. In this paper, we lift the restriction concerning the use of state. We present λi4, a calculus with implicit parallelism in the form of prioritized futures and mutable state in the form of references. Because both futures and references are first-class values, λi4 programs can exhibit complex dependencies, including interaction between threads and with the external world (users, network, etc). To reason about the responsiveness of λi4 programs, we extend traditional graph-based cost models for parallelism to account for dependencies created via mutable state, and we present a type system to outlaw priority inversions that can lead to unbounded blocking. We show that these techniques are practical by implementing them in C++ and present an empirical evaluation.","PeriodicalId":20580,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Responsive parallelism with futures and state\",\"authors\":\"Stefan K. Muller, Kyle Singer, N. Goldstein, Umut A. Acar, Kunal Agrawal, I. Lee\",\"doi\":\"10.1145/3385412.3386013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the increasing shift to multicore computers, recent work has developed language support for responsive parallel applications that mix compute-intensive tasks with latency-sensitive, usually interactive, tasks. These developments include calculi that allow assigning priorities to threads, type systems that can rule out priority inversions, and accompanying cost models for predicting responsiveness. These advances share one important limitation: all of this work assumes purely functional programming. This is a significant restriction, because many realistic interactive applications, from games to robots to web servers, use mutable state, e.g., for communication between threads. In this paper, we lift the restriction concerning the use of state. We present λi4, a calculus with implicit parallelism in the form of prioritized futures and mutable state in the form of references. Because both futures and references are first-class values, λi4 programs can exhibit complex dependencies, including interaction between threads and with the external world (users, network, etc). To reason about the responsiveness of λi4 programs, we extend traditional graph-based cost models for parallelism to account for dependencies created via mutable state, and we present a type system to outlaw priority inversions that can lead to unbounded blocking. We show that these techniques are practical by implementing them in C++ and present an empirical evaluation.\",\"PeriodicalId\":20580,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3385412.3386013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385412.3386013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

由于越来越多地转向多核计算机,最近的工作已经为响应式并行应用程序开发了语言支持,这些应用程序将计算密集型任务与延迟敏感(通常是交互式)任务混合在一起。这些发展包括允许为线程分配优先级的演算,可以排除优先级反转的类型系统,以及用于预测响应性的附带成本模型。这些进步都有一个重要的限制:所有这些工作都假设纯函数式编程。这是一个重要的限制,因为许多现实的交互式应用程序,从游戏到机器人到web服务器,都使用可变状态,例如,用于线程之间的通信。在本文中,我们解除了对状态使用的限制。我们提出了λi4,一种具有优先未来形式的隐式并行性和引用形式的可变状态的微积分。因为future和reference都是一等值,所以λi4程序可以表现出复杂的依赖关系,包括线程之间以及与外部世界(用户、网络等)的交互。为了解释λi4程序的响应性,我们扩展了传统的基于图的并行性成本模型,以考虑通过可变状态创建的依赖关系,并且我们提出了一个类型系统来禁止可能导致无界阻塞的优先级反转。我们通过在c++中实现这些技术来证明它们是实用的,并给出了一个经验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Responsive parallelism with futures and state
Motivated by the increasing shift to multicore computers, recent work has developed language support for responsive parallel applications that mix compute-intensive tasks with latency-sensitive, usually interactive, tasks. These developments include calculi that allow assigning priorities to threads, type systems that can rule out priority inversions, and accompanying cost models for predicting responsiveness. These advances share one important limitation: all of this work assumes purely functional programming. This is a significant restriction, because many realistic interactive applications, from games to robots to web servers, use mutable state, e.g., for communication between threads. In this paper, we lift the restriction concerning the use of state. We present λi4, a calculus with implicit parallelism in the form of prioritized futures and mutable state in the form of references. Because both futures and references are first-class values, λi4 programs can exhibit complex dependencies, including interaction between threads and with the external world (users, network, etc). To reason about the responsiveness of λi4 programs, we extend traditional graph-based cost models for parallelism to account for dependencies created via mutable state, and we present a type system to outlaw priority inversions that can lead to unbounded blocking. We show that these techniques are practical by implementing them in C++ and present an empirical evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信