庞加莱定理在周期混合和脉冲动力系统中的推广

V. Chellaboina, S. Nersesov, W. Haddad
{"title":"庞加莱定理在周期混合和脉冲动力系统中的推广","authors":"V. Chellaboina, S. Nersesov, W. Haddad","doi":"10.1115/imece2001/dsc-24593","DOIUrl":null,"url":null,"abstract":"\n Poincaré’s method is well known for analyzing the stability of continuous-time periodic dynamical systems by studying the stability properties of a fixed point as an equilibrium point of a discrete-time system. In this paper we generalize Poincaré’s method to dynamical systems possessing left-continuous flows to address the stability of limit cycles and periodic orbits of left-continuous, hybrid, and impulsive dynamical systems. It is shown that resetting manifold (which gives rise to the state discontinuities) provides a natural hyperplane for defining a Poincaré return map. In the special case of impulsive dynamical systems, we show the Poincaré map replaces an nth-order impulsive dynamical system by an (n − 1)th-order discrete-time system for analyzing the stability of periodic orbits.","PeriodicalId":90691,"journal":{"name":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalization of Poincaré’s Theorem to Periodic Hybrid and Impulsive Dynamical Systems\",\"authors\":\"V. Chellaboina, S. Nersesov, W. Haddad\",\"doi\":\"10.1115/imece2001/dsc-24593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Poincaré’s method is well known for analyzing the stability of continuous-time periodic dynamical systems by studying the stability properties of a fixed point as an equilibrium point of a discrete-time system. In this paper we generalize Poincaré’s method to dynamical systems possessing left-continuous flows to address the stability of limit cycles and periodic orbits of left-continuous, hybrid, and impulsive dynamical systems. It is shown that resetting manifold (which gives rise to the state discontinuities) provides a natural hyperplane for defining a Poincaré return map. In the special case of impulsive dynamical systems, we show the Poincaré map replaces an nth-order impulsive dynamical system by an (n − 1)th-order discrete-time system for analyzing the stability of periodic orbits.\",\"PeriodicalId\":90691,\"journal\":{\"name\":\"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/dsc-24593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/dsc-24593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

庞卡罗的方法是通过研究一个不动点作为一个离散时间系统的平衡点的稳定性来分析连续时间周期动力系统的稳定性。本文将poincarcarcarr的方法推广到具有左连续流的动力系统,用于研究左连续、混合和脉冲动力系统的极限环和周期轨道的稳定性。证明了重置流形(产生状态不连续)为定义庞卡罗返回映射提供了一个自然的超平面。在脉冲动力系统的特殊情况下,我们证明了用(n−1)阶离散时间系统代替n阶脉冲动力系统来分析周期轨道的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalization of Poincaré’s Theorem to Periodic Hybrid and Impulsive Dynamical Systems
Poincaré’s method is well known for analyzing the stability of continuous-time periodic dynamical systems by studying the stability properties of a fixed point as an equilibrium point of a discrete-time system. In this paper we generalize Poincaré’s method to dynamical systems possessing left-continuous flows to address the stability of limit cycles and periodic orbits of left-continuous, hybrid, and impulsive dynamical systems. It is shown that resetting manifold (which gives rise to the state discontinuities) provides a natural hyperplane for defining a Poincaré return map. In the special case of impulsive dynamical systems, we show the Poincaré map replaces an nth-order impulsive dynamical system by an (n − 1)th-order discrete-time system for analyzing the stability of periodic orbits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信