{"title":"通过反馈控制系统极点配置的pid整定方法","authors":"A. Zhuchenko, Redrikh Putiatin","doi":"10.20535/2617-9741.4.2022.269779","DOIUrl":null,"url":null,"abstract":"Pole placement is the only PID-tuning technic that allows one to obtain a control system with desired, and, moreover, highly predictable performance and control quality. Number of controller tuning parameters is equal to number of poles closed-loop poles it can precicely place, so that PID-controller can place exactly three poles, and PI- can place only two. For this reason PI-controller is best used with first-order processes (second-order closed loop system), and PID-controller with second-orded ones (third-order closed loop system). However, many processes have higher order than two, and still are controlled with PID-controllers. To tune it using pole placement techniques, it is necessary to consider only dominant poles, which affect performance of the system to the greatest extent. First, it is necessary to study a PI-controller with a second-order process, which is the most basic case. Tuning is performed using global optimization methods to fit dominant poles of a tuned system to dominant poles of a reference system.","PeriodicalId":20682,"journal":{"name":"Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving","volume":"13 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for PID-tuning via feedback control system pole placement\",\"authors\":\"A. Zhuchenko, Redrikh Putiatin\",\"doi\":\"10.20535/2617-9741.4.2022.269779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pole placement is the only PID-tuning technic that allows one to obtain a control system with desired, and, moreover, highly predictable performance and control quality. Number of controller tuning parameters is equal to number of poles closed-loop poles it can precicely place, so that PID-controller can place exactly three poles, and PI- can place only two. For this reason PI-controller is best used with first-order processes (second-order closed loop system), and PID-controller with second-orded ones (third-order closed loop system). However, many processes have higher order than two, and still are controlled with PID-controllers. To tune it using pole placement techniques, it is necessary to consider only dominant poles, which affect performance of the system to the greatest extent. First, it is necessary to study a PI-controller with a second-order process, which is the most basic case. Tuning is performed using global optimization methods to fit dominant poles of a tuned system to dominant poles of a reference system.\",\"PeriodicalId\":20682,\"journal\":{\"name\":\"Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving\",\"volume\":\"13 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20535/2617-9741.4.2022.269779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/2617-9741.4.2022.269779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Method for PID-tuning via feedback control system pole placement
Pole placement is the only PID-tuning technic that allows one to obtain a control system with desired, and, moreover, highly predictable performance and control quality. Number of controller tuning parameters is equal to number of poles closed-loop poles it can precicely place, so that PID-controller can place exactly three poles, and PI- can place only two. For this reason PI-controller is best used with first-order processes (second-order closed loop system), and PID-controller with second-orded ones (third-order closed loop system). However, many processes have higher order than two, and still are controlled with PID-controllers. To tune it using pole placement techniques, it is necessary to consider only dominant poles, which affect performance of the system to the greatest extent. First, it is necessary to study a PI-controller with a second-order process, which is the most basic case. Tuning is performed using global optimization methods to fit dominant poles of a tuned system to dominant poles of a reference system.