Arvinder Singh Channi, H. Bains, J. S. Grewal, Vettivel Singaravel Chidambranathan, Ramanuj Kumar
{"title":"挤压铸造铝基复合材料(5-10% TiB2)电火花加工中刀具磨损率的研究","authors":"Arvinder Singh Channi, H. Bains, J. S. Grewal, Vettivel Singaravel Chidambranathan, Ramanuj Kumar","doi":"10.5599/jese.1391","DOIUrl":null,"url":null,"abstract":"Squeeze casting was used to prepare aluminium alloy-6061/titanium diboride (TiB2) to create a composite with varied TiB2 quantities. The composite's metallographic structure, tensile strength, and hardness have been explored. The tensile strength and hardness of produced metal matrix composites increased when a particle of TiB2 was increased from 5 to 10 vol.%. This study uses electrical discharge machining (EDM) to investigate the output response tool wear rate (TWR). Variables in EDM operation were investigated, such as current, pulse on time, and voltage gap. The experiments were designed using the Box–Behnken strategy. Statistical approaches were used to analyse the experiments. At ideal settings for TiB2 concentrations of 5 and 10 vol.%, TWR was 0.2146 and 0.1749 mm3 min-1 and surface roughness was 2.47 and 3.03 µm, respectively. TiB2 is utilized in automobile disc brakes, an industry where components slide against each other. The aluminium alloy-6061/titanium diboride has many applications as a biomaterial and is a good prospect.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"40 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Investigation of Tool Wear Rate during EDM for Aluminium Metal Matrix Composite (5-10% TiB2) Prepared by Squeeze Casting\",\"authors\":\"Arvinder Singh Channi, H. Bains, J. S. Grewal, Vettivel Singaravel Chidambranathan, Ramanuj Kumar\",\"doi\":\"10.5599/jese.1391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Squeeze casting was used to prepare aluminium alloy-6061/titanium diboride (TiB2) to create a composite with varied TiB2 quantities. The composite's metallographic structure, tensile strength, and hardness have been explored. The tensile strength and hardness of produced metal matrix composites increased when a particle of TiB2 was increased from 5 to 10 vol.%. This study uses electrical discharge machining (EDM) to investigate the output response tool wear rate (TWR). Variables in EDM operation were investigated, such as current, pulse on time, and voltage gap. The experiments were designed using the Box–Behnken strategy. Statistical approaches were used to analyse the experiments. At ideal settings for TiB2 concentrations of 5 and 10 vol.%, TWR was 0.2146 and 0.1749 mm3 min-1 and surface roughness was 2.47 and 3.03 µm, respectively. TiB2 is utilized in automobile disc brakes, an industry where components slide against each other. The aluminium alloy-6061/titanium diboride has many applications as a biomaterial and is a good prospect.\",\"PeriodicalId\":15660,\"journal\":{\"name\":\"Journal of Electrochemical Science and Engineering\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/jese.1391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.1391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Investigation of Tool Wear Rate during EDM for Aluminium Metal Matrix Composite (5-10% TiB2) Prepared by Squeeze Casting
Squeeze casting was used to prepare aluminium alloy-6061/titanium diboride (TiB2) to create a composite with varied TiB2 quantities. The composite's metallographic structure, tensile strength, and hardness have been explored. The tensile strength and hardness of produced metal matrix composites increased when a particle of TiB2 was increased from 5 to 10 vol.%. This study uses electrical discharge machining (EDM) to investigate the output response tool wear rate (TWR). Variables in EDM operation were investigated, such as current, pulse on time, and voltage gap. The experiments were designed using the Box–Behnken strategy. Statistical approaches were used to analyse the experiments. At ideal settings for TiB2 concentrations of 5 and 10 vol.%, TWR was 0.2146 and 0.1749 mm3 min-1 and surface roughness was 2.47 and 3.03 µm, respectively. TiB2 is utilized in automobile disc brakes, an industry where components slide against each other. The aluminium alloy-6061/titanium diboride has many applications as a biomaterial and is a good prospect.