{"title":"螺旋微通道耦合收缩-膨胀阵列以增强基于微流体的颗粒/细胞分离","authors":"Z. Shahraki, M. Navidbakhsh, Robert A. Taylor","doi":"10.1080/10618562.2022.2053114","DOIUrl":null,"url":null,"abstract":"In the field of microfluidic inertial-based focusing of suspended particles, no research has been conducted to bring together two of the main directions of research, trapezoid spiral microchannels and contraction-expansion array (CEA)s. This paper addresses that gap by investigating two proposed CEAs (smooth and abrupt) inside a spiral channel compared to a uniform cross-section design at three different flow rates (i.e. 3, 6, and . The conservation equations of mass and momentum with a Lagrangian’-Eulerian (LE) approach are solved in OpenFOAM, using a four-way coupling between the phases. The results indicate that adding smooth transition CEAs to spiral microchannels, at a nominal flow rate , decreases the focusing duration (by about 29%) and the cell lysis probability (by about 52%) while keeping the separation efficiency high (nearly 100%). Overall, this study opens a promising new, integrated direction for passive microfluidic focusing of particles.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"27 1","pages":"63 - 90"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coupling Contraction-expansion Arrays with Spiral Microchannels to Enhance Microfluidic-Based Particle/Cell Separation\",\"authors\":\"Z. Shahraki, M. Navidbakhsh, Robert A. Taylor\",\"doi\":\"10.1080/10618562.2022.2053114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of microfluidic inertial-based focusing of suspended particles, no research has been conducted to bring together two of the main directions of research, trapezoid spiral microchannels and contraction-expansion array (CEA)s. This paper addresses that gap by investigating two proposed CEAs (smooth and abrupt) inside a spiral channel compared to a uniform cross-section design at three different flow rates (i.e. 3, 6, and . The conservation equations of mass and momentum with a Lagrangian’-Eulerian (LE) approach are solved in OpenFOAM, using a four-way coupling between the phases. The results indicate that adding smooth transition CEAs to spiral microchannels, at a nominal flow rate , decreases the focusing duration (by about 29%) and the cell lysis probability (by about 52%) while keeping the separation efficiency high (nearly 100%). Overall, this study opens a promising new, integrated direction for passive microfluidic focusing of particles.\",\"PeriodicalId\":56288,\"journal\":{\"name\":\"International Journal of Computational Fluid Dynamics\",\"volume\":\"27 1\",\"pages\":\"63 - 90\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10618562.2022.2053114\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2022.2053114","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Coupling Contraction-expansion Arrays with Spiral Microchannels to Enhance Microfluidic-Based Particle/Cell Separation
In the field of microfluidic inertial-based focusing of suspended particles, no research has been conducted to bring together two of the main directions of research, trapezoid spiral microchannels and contraction-expansion array (CEA)s. This paper addresses that gap by investigating two proposed CEAs (smooth and abrupt) inside a spiral channel compared to a uniform cross-section design at three different flow rates (i.e. 3, 6, and . The conservation equations of mass and momentum with a Lagrangian’-Eulerian (LE) approach are solved in OpenFOAM, using a four-way coupling between the phases. The results indicate that adding smooth transition CEAs to spiral microchannels, at a nominal flow rate , decreases the focusing duration (by about 29%) and the cell lysis probability (by about 52%) while keeping the separation efficiency high (nearly 100%). Overall, this study opens a promising new, integrated direction for passive microfluidic focusing of particles.
期刊介绍:
The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields.
The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.