Alex Bertino, M. Bagheri, M. Krstić, P. Naseradinmousavi
{"title":"基于实验自主深度学习的七自由度机械臂三维路径规划","authors":"Alex Bertino, M. Bagheri, M. Krstić, P. Naseradinmousavi","doi":"10.1115/dscc2019-8951","DOIUrl":null,"url":null,"abstract":"\n In this paper, we examine the autonomous operation of a high-DOF robot manipulator. We investigate a pick-and-place task where the position and orientation of an object, an obstacle, and a target pad are initially unknown and need to be autonomously determined. In order to complete this task, we employ a combination of computer vision, deep learning, and control techniques. First, we locate the center of each item in two captured images utilizing HSV-based scanning. Second, we utilize stereo vision techniques to determine the 3D position of each item. Third, we implement a Convolutional Neural Network in order to determine the orientation of the object. Finally, we use the calculated 3D positions of each item to establish an obstacle avoidance trajectory lifting the object over the obstacle and onto the target pad. Through the results of our research, we demonstrate that our combination of techniques has minimal error, is capable of running in real-time, and is able to reliably perform the task. Thus, we demonstrate that through the combination of specialized autonomous techniques, generalization to a complex autonomous task is possible.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Experimental Autonomous Deep Learning-Based 3D Path Planning for a 7-DOF Robot Manipulator\",\"authors\":\"Alex Bertino, M. Bagheri, M. Krstić, P. Naseradinmousavi\",\"doi\":\"10.1115/dscc2019-8951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we examine the autonomous operation of a high-DOF robot manipulator. We investigate a pick-and-place task where the position and orientation of an object, an obstacle, and a target pad are initially unknown and need to be autonomously determined. In order to complete this task, we employ a combination of computer vision, deep learning, and control techniques. First, we locate the center of each item in two captured images utilizing HSV-based scanning. Second, we utilize stereo vision techniques to determine the 3D position of each item. Third, we implement a Convolutional Neural Network in order to determine the orientation of the object. Finally, we use the calculated 3D positions of each item to establish an obstacle avoidance trajectory lifting the object over the obstacle and onto the target pad. Through the results of our research, we demonstrate that our combination of techniques has minimal error, is capable of running in real-time, and is able to reliably perform the task. Thus, we demonstrate that through the combination of specialized autonomous techniques, generalization to a complex autonomous task is possible.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-8951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-8951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Experimental Autonomous Deep Learning-Based 3D Path Planning for a 7-DOF Robot Manipulator
In this paper, we examine the autonomous operation of a high-DOF robot manipulator. We investigate a pick-and-place task where the position and orientation of an object, an obstacle, and a target pad are initially unknown and need to be autonomously determined. In order to complete this task, we employ a combination of computer vision, deep learning, and control techniques. First, we locate the center of each item in two captured images utilizing HSV-based scanning. Second, we utilize stereo vision techniques to determine the 3D position of each item. Third, we implement a Convolutional Neural Network in order to determine the orientation of the object. Finally, we use the calculated 3D positions of each item to establish an obstacle avoidance trajectory lifting the object over the obstacle and onto the target pad. Through the results of our research, we demonstrate that our combination of techniques has minimal error, is capable of running in real-time, and is able to reliably perform the task. Thus, we demonstrate that through the combination of specialized autonomous techniques, generalization to a complex autonomous task is possible.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.