Virasoro代数的多项式模对sl2(C)的约束

Pub Date : 2022-07-26 DOI:10.1142/s1005386722000372
Matthew Ondrus, Emilie Wiesner
{"title":"Virasoro代数的多项式模对sl2(C)的约束","authors":"Matthew Ondrus, Emilie Wiesner","doi":"10.1142/s1005386722000372","DOIUrl":null,"url":null,"abstract":"The Lie algebra [Formula: see text] may be regarded in a natural way as a subalgebra of the infinite-dimensional Virasoro Lie algebra, so it is natural to consider connections between the representation theory of the two algebras. In this paper, we explore the restriction to [Formula: see text] of certain induced modules for the Virasoro algebra. Specifically, we consider Virasoro modules induced from so-called polynomial subalgebras, and we show that the restriction of these modules results in twisted versions of familiar modules such as Verma modules and Whittaker modules.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Restriction of Polynomial Modules for the Virasoro Algebra to sl2(C)\",\"authors\":\"Matthew Ondrus, Emilie Wiesner\",\"doi\":\"10.1142/s1005386722000372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lie algebra [Formula: see text] may be regarded in a natural way as a subalgebra of the infinite-dimensional Virasoro Lie algebra, so it is natural to consider connections between the representation theory of the two algebras. In this paper, we explore the restriction to [Formula: see text] of certain induced modules for the Virasoro algebra. Specifically, we consider Virasoro modules induced from so-called polynomial subalgebras, and we show that the restriction of these modules results in twisted versions of familiar modules such as Verma modules and Whittaker modules.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

李代数[公式:见原文]可以很自然地看作是无限维Virasoro李代数的一个子代数,因此考虑这两个代数的表示理论之间的联系是很自然的。本文探讨了Virasoro代数的某些诱导模对[公式:见文]的限制。具体来说,我们考虑了由所谓的多项式子代数导出的Virasoro模,并证明了这些模的限制导致了常见模的扭曲版本,如Verma模和Whittaker模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Restriction of Polynomial Modules for the Virasoro Algebra to sl2(C)
The Lie algebra [Formula: see text] may be regarded in a natural way as a subalgebra of the infinite-dimensional Virasoro Lie algebra, so it is natural to consider connections between the representation theory of the two algebras. In this paper, we explore the restriction to [Formula: see text] of certain induced modules for the Virasoro algebra. Specifically, we consider Virasoro modules induced from so-called polynomial subalgebras, and we show that the restriction of these modules results in twisted versions of familiar modules such as Verma modules and Whittaker modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信