{"title":"解决基于模型的推荐系统的冷用户问题","authors":"Tomas Geurts, F. Frasincar","doi":"10.1145/3106426.3106431","DOIUrl":null,"url":null,"abstract":"Customers of a webshop are often presented large assortments, which can lead to customers struggling finding their desired product(s), an issue known as choice overload. In order to overcome this issue, recommender systems are used in webshops to provide personalized product recommendations to customers. Though, recommender systems using matrix factorization are not able to provide recommendations to new customers (i.e., cold users). To facilitate recommendations to cold users we investigate multiple active learning strategies, and subsequently evaluate which active learning strategy is able to optimally elicit the preferences from the cold users. Our model is empirically validated using a dataset from the webshop of de Bijenkorf, a Dutch department store. We find that the overall best-performing active learning strategy is PopGini, an active learning strategy which combines the popularity of an item with its Gini impurity score.","PeriodicalId":20685,"journal":{"name":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Addressing the cold user problem for model-based recommender systems\",\"authors\":\"Tomas Geurts, F. Frasincar\",\"doi\":\"10.1145/3106426.3106431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Customers of a webshop are often presented large assortments, which can lead to customers struggling finding their desired product(s), an issue known as choice overload. In order to overcome this issue, recommender systems are used in webshops to provide personalized product recommendations to customers. Though, recommender systems using matrix factorization are not able to provide recommendations to new customers (i.e., cold users). To facilitate recommendations to cold users we investigate multiple active learning strategies, and subsequently evaluate which active learning strategy is able to optimally elicit the preferences from the cold users. Our model is empirically validated using a dataset from the webshop of de Bijenkorf, a Dutch department store. We find that the overall best-performing active learning strategy is PopGini, an active learning strategy which combines the popularity of an item with its Gini impurity score.\",\"PeriodicalId\":20685,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3106426.3106431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106426.3106431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Addressing the cold user problem for model-based recommender systems
Customers of a webshop are often presented large assortments, which can lead to customers struggling finding their desired product(s), an issue known as choice overload. In order to overcome this issue, recommender systems are used in webshops to provide personalized product recommendations to customers. Though, recommender systems using matrix factorization are not able to provide recommendations to new customers (i.e., cold users). To facilitate recommendations to cold users we investigate multiple active learning strategies, and subsequently evaluate which active learning strategy is able to optimally elicit the preferences from the cold users. Our model is empirically validated using a dataset from the webshop of de Bijenkorf, a Dutch department store. We find that the overall best-performing active learning strategy is PopGini, an active learning strategy which combines the popularity of an item with its Gini impurity score.