自主重载列车状态观测与参数辨识

Kaibing Du, Zhanchao Wang, Zhengfang Zhang
{"title":"自主重载列车状态观测与参数辨识","authors":"Kaibing Du, Zhanchao Wang, Zhengfang Zhang","doi":"10.1109/VPPC49601.2020.9330821","DOIUrl":null,"url":null,"abstract":"Heavy haul train is large inertial and non-linear systems. Many real-time disturbances have a significant impact on autonomous driving control. In order to improve the effect of autonomous control, a new state observation and parameter identification method is proposed. The longitudinal multi-mass dynamics model is established for describing the train performance. The acceleration is calculated by Kalman filter of sampled speed. Resistance force and air braking response are identified by train dynamic model. The state observation method can significantly improve autonomous driving control effects. This method is used in control of heavy train autonomous driving.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"131 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"State Observation and Parameter Identification for Autonomous Heavy Haul Train\",\"authors\":\"Kaibing Du, Zhanchao Wang, Zhengfang Zhang\",\"doi\":\"10.1109/VPPC49601.2020.9330821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heavy haul train is large inertial and non-linear systems. Many real-time disturbances have a significant impact on autonomous driving control. In order to improve the effect of autonomous control, a new state observation and parameter identification method is proposed. The longitudinal multi-mass dynamics model is established for describing the train performance. The acceleration is calculated by Kalman filter of sampled speed. Resistance force and air braking response are identified by train dynamic model. The state observation method can significantly improve autonomous driving control effects. This method is used in control of heavy train autonomous driving.\",\"PeriodicalId\":6851,\"journal\":{\"name\":\"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"volume\":\"131 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC49601.2020.9330821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC49601.2020.9330821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

重载列车是一个大型惯性非线性系统。许多实时干扰对自动驾驶控制产生了重大影响。为了提高自主控制的效果,提出了一种新的状态观测和参数辨识方法。建立了描述列车性能的纵向多质量动力学模型。通过采样速度的卡尔曼滤波计算加速度。利用列车动力学模型识别阻力和空气制动响应。状态观察法可以显著提高自动驾驶的控制效果。该方法已应用于重型列车自动驾驶控制中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State Observation and Parameter Identification for Autonomous Heavy Haul Train
Heavy haul train is large inertial and non-linear systems. Many real-time disturbances have a significant impact on autonomous driving control. In order to improve the effect of autonomous control, a new state observation and parameter identification method is proposed. The longitudinal multi-mass dynamics model is established for describing the train performance. The acceleration is calculated by Kalman filter of sampled speed. Resistance force and air braking response are identified by train dynamic model. The state observation method can significantly improve autonomous driving control effects. This method is used in control of heavy train autonomous driving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信