热映射的布洛赫定理

J. Cortissoz
{"title":"热映射的布洛赫定理","authors":"J. Cortissoz","doi":"10.4171/rsmup/92","DOIUrl":null,"url":null,"abstract":"In this paper we give a proof via the contraction mapping principle of a Bloch-type theorem for (normalised) heat Bochner-Takahashi K-mappings, that is, mappings that are solutions to the heat equation, and which also satisfy a weak form of K-quasiregularity. We also provide estimates from below for the radius of the univalent balls covered by this family of functions.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bloch’s theorem for heat mappings\",\"authors\":\"J. Cortissoz\",\"doi\":\"10.4171/rsmup/92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give a proof via the contraction mapping principle of a Bloch-type theorem for (normalised) heat Bochner-Takahashi K-mappings, that is, mappings that are solutions to the heat equation, and which also satisfy a weak form of K-quasiregularity. We also provide estimates from below for the radius of the univalent balls covered by this family of functions.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用压缩映射原理给出了(归一化)热Bochner-Takahashi k -映射的bloch型定理证明,即热方程的解的映射,也满足k -拟正则性的弱形式。我们还从下面给出了这组函数所覆盖的单价球的半径的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bloch’s theorem for heat mappings
In this paper we give a proof via the contraction mapping principle of a Bloch-type theorem for (normalised) heat Bochner-Takahashi K-mappings, that is, mappings that are solutions to the heat equation, and which also satisfy a weak form of K-quasiregularity. We also provide estimates from below for the radius of the univalent balls covered by this family of functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信