利用非结合代数推广Riccati方程的一些不稳定性结果

Pub Date : 2022-12-30 DOI:10.3336/gm.57.2.06
Hamza Boujemaa, B. Ferčec
{"title":"利用非结合代数推广Riccati方程的一些不稳定性结果","authors":"Hamza Boujemaa, B. Ferčec","doi":"10.3336/gm.57.2.06","DOIUrl":null,"url":null,"abstract":"In [28], for any real non associative algebra of dimension \\(m\\geq2\\),\nhaving \\(k\\) linearly independent nilpotent elements \\(n_{1}\\), \\(n_{2}\\), …,\n\\(n_{k},\\) \\(1\\leq k\\leq m-1\\), Mencinger and Zalar defined near idempotents and\nnear nilpotents associated to \\(n_{1}\\), \\(n_{2}\\), …, \\(n_{k}\\). Assuming\n\\(\\mathcal{N}_{k}\\mathcal{N}_{k}=\\left\\{ 0\\right\\}\\), where \\(\\mathcal{N}\n_{k}=\\operatorname*{span}\\left\\{ n_{1},n_{2},\\ldots,n_{k}\\right\\} \\), they\nshowed that if there exists a near idempotent or a near nilpotent, called \\(u\\),\nassociated to \\(n_{1},n_{2},\\ldots,n_{k}\\) verifying \\(n_{i}u\\in\\mathbb{R}n_{i},\\)\nfor \\(1\\leq i\\leq k\\), then any nilpotent element in \\(\\mathcal{N}_{k}\\) is\nunstable. They also raised the question of extending their results to cases\nwhere \\(\\mathcal{N}_{k}\\mathcal{N}_{k}\\not =\\left\\{ 0\\right\\} \\) with\n\\(\\mathcal{N}_{k}\\mathcal{N}_{k}\\subset\\mathcal{N}_{k}\\mathcal{\\ }\\)and to cases\nwhere \\(\\mathcal{N}_{k}\\mathcal{N}_{k} \\not\\subset \\mathcal{N}_{k}.\\)\n\n\nIn this paper, positive answers are emphasized and in some cases under the\nweaker conditions \\(n_{i}u\\in\\mathcal{N}_{k}\\). In addition, we characterize all\nsuch algebras in dimension 3.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a generalization of some instability results for Riccati equations via nonassociative algebras\",\"authors\":\"Hamza Boujemaa, B. Ferčec\",\"doi\":\"10.3336/gm.57.2.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [28], for any real non associative algebra of dimension \\\\(m\\\\geq2\\\\),\\nhaving \\\\(k\\\\) linearly independent nilpotent elements \\\\(n_{1}\\\\), \\\\(n_{2}\\\\), …,\\n\\\\(n_{k},\\\\) \\\\(1\\\\leq k\\\\leq m-1\\\\), Mencinger and Zalar defined near idempotents and\\nnear nilpotents associated to \\\\(n_{1}\\\\), \\\\(n_{2}\\\\), …, \\\\(n_{k}\\\\). Assuming\\n\\\\(\\\\mathcal{N}_{k}\\\\mathcal{N}_{k}=\\\\left\\\\{ 0\\\\right\\\\}\\\\), where \\\\(\\\\mathcal{N}\\n_{k}=\\\\operatorname*{span}\\\\left\\\\{ n_{1},n_{2},\\\\ldots,n_{k}\\\\right\\\\} \\\\), they\\nshowed that if there exists a near idempotent or a near nilpotent, called \\\\(u\\\\),\\nassociated to \\\\(n_{1},n_{2},\\\\ldots,n_{k}\\\\) verifying \\\\(n_{i}u\\\\in\\\\mathbb{R}n_{i},\\\\)\\nfor \\\\(1\\\\leq i\\\\leq k\\\\), then any nilpotent element in \\\\(\\\\mathcal{N}_{k}\\\\) is\\nunstable. They also raised the question of extending their results to cases\\nwhere \\\\(\\\\mathcal{N}_{k}\\\\mathcal{N}_{k}\\\\not =\\\\left\\\\{ 0\\\\right\\\\} \\\\) with\\n\\\\(\\\\mathcal{N}_{k}\\\\mathcal{N}_{k}\\\\subset\\\\mathcal{N}_{k}\\\\mathcal{\\\\ }\\\\)and to cases\\nwhere \\\\(\\\\mathcal{N}_{k}\\\\mathcal{N}_{k} \\\\not\\\\subset \\\\mathcal{N}_{k}.\\\\)\\n\\n\\nIn this paper, positive answers are emphasized and in some cases under the\\nweaker conditions \\\\(n_{i}u\\\\in\\\\mathcal{N}_{k}\\\\). In addition, we characterize all\\nsuch algebras in dimension 3.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.57.2.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在[28]中,对于维数为。的实非结合代数 \(m\geq2\),有 \(k\) 线性无关的幂零元素 \(n_{1}\), \(n_{2}\),……\(n_{k},\) \(1\leq k\leq m-1\), meninger和Zalar定义了与之相关的近等幂和近零幂 \(n_{1}\), \(n_{2}\),…… \(n_{k}\). 假设\(\mathcal{N}_{k}\mathcal{N}_{k}=\left\{ 0\right\}\),其中 \(\mathcal{N}_{k}=\operatorname*{span}\left\{ n_{1},n_{2},\ldots,n_{k}\right\} \),他们证明了是否存在一个近幂等或近幂零,称为 \(u\)与…有关 \(n_{1},n_{2},\ldots,n_{k}\) 验证 \(n_{i}u\in\mathbb{R}n_{i},\)为了 \(1\leq i\leq k\)中的任何幂零元素 \(\mathcal{N}_{k}\) 是不稳定的。他们还提出了将他们的结果扩展到其他案例的问题 \(\mathcal{N}_{k}\mathcal{N}_{k}\not =\left\{ 0\right\} \) 有\(\mathcal{N}_{k}\mathcal{N}_{k}\subset\mathcal{N}_{k}\mathcal{\ }\)到哪里去 \(\mathcal{N}_{k}\mathcal{N}_{k} \not\subset \mathcal{N}_{k}.\)在某些情况下,在较弱的条件下,本文强调肯定的答案 \(n_{i}u\in\mathcal{N}_{k}\). 此外,我们在3维上刻画了所有这些代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a generalization of some instability results for Riccati equations via nonassociative algebras
In [28], for any real non associative algebra of dimension \(m\geq2\), having \(k\) linearly independent nilpotent elements \(n_{1}\), \(n_{2}\), …, \(n_{k},\) \(1\leq k\leq m-1\), Mencinger and Zalar defined near idempotents and near nilpotents associated to \(n_{1}\), \(n_{2}\), …, \(n_{k}\). Assuming \(\mathcal{N}_{k}\mathcal{N}_{k}=\left\{ 0\right\}\), where \(\mathcal{N} _{k}=\operatorname*{span}\left\{ n_{1},n_{2},\ldots,n_{k}\right\} \), they showed that if there exists a near idempotent or a near nilpotent, called \(u\), associated to \(n_{1},n_{2},\ldots,n_{k}\) verifying \(n_{i}u\in\mathbb{R}n_{i},\) for \(1\leq i\leq k\), then any nilpotent element in \(\mathcal{N}_{k}\) is unstable. They also raised the question of extending their results to cases where \(\mathcal{N}_{k}\mathcal{N}_{k}\not =\left\{ 0\right\} \) with \(\mathcal{N}_{k}\mathcal{N}_{k}\subset\mathcal{N}_{k}\mathcal{\ }\)and to cases where \(\mathcal{N}_{k}\mathcal{N}_{k} \not\subset \mathcal{N}_{k}.\) In this paper, positive answers are emphasized and in some cases under the weaker conditions \(n_{i}u\in\mathcal{N}_{k}\). In addition, we characterize all such algebras in dimension 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信