正则树中局部可查问题的有效分类

A. Balliu, S. Brandt, Yi-Jun Chang, D. Olivetti, Jan Studen'y, J. Suomela
{"title":"正则树中局部可查问题的有效分类","authors":"A. Balliu, S. Brandt, Yi-Jun Chang, D. Olivetti, Jan Studen'y, J. Suomela","doi":"10.4230/LIPIcs.DISC.2022.8","DOIUrl":null,"url":null,"abstract":"We give practical, efficient algorithms that automatically determine the asymptotic distributed round complexity of a given locally checkable graph problem in the [Θ(log n ) , Θ( n )] region, in two settings. We present one algorithm for unrooted regular trees and another algorithm for rooted regular trees. The algorithms take the description of a locally checkable labeling problem as input, and the running time is polynomial in the size of the problem description. The algorithms decide if the problem is solvable in O (log n ) rounds. If not, it is known that the complexity has to be Θ( n 1 /k ) for some k = 1 , 2 , . . . , and in this case the algorithms also output the right value of the exponent k . In rooted trees in the O (log n ) case we can then further determine the exact complexity class by using algorithms from prior work; for unrooted trees the more fine-grained classification in the O (log n ) region remains an open question.","PeriodicalId":89463,"journal":{"name":"Proceedings of the ... International Symposium on High Performance Distributed Computing","volume":"19 1","pages":"8:1-8:19"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient Classification of Locally Checkable Problems in Regular Trees\",\"authors\":\"A. Balliu, S. Brandt, Yi-Jun Chang, D. Olivetti, Jan Studen'y, J. Suomela\",\"doi\":\"10.4230/LIPIcs.DISC.2022.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give practical, efficient algorithms that automatically determine the asymptotic distributed round complexity of a given locally checkable graph problem in the [Θ(log n ) , Θ( n )] region, in two settings. We present one algorithm for unrooted regular trees and another algorithm for rooted regular trees. The algorithms take the description of a locally checkable labeling problem as input, and the running time is polynomial in the size of the problem description. The algorithms decide if the problem is solvable in O (log n ) rounds. If not, it is known that the complexity has to be Θ( n 1 /k ) for some k = 1 , 2 , . . . , and in this case the algorithms also output the right value of the exponent k . In rooted trees in the O (log n ) case we can then further determine the exact complexity class by using algorithms from prior work; for unrooted trees the more fine-grained classification in the O (log n ) region remains an open question.\",\"PeriodicalId\":89463,\"journal\":{\"name\":\"Proceedings of the ... International Symposium on High Performance Distributed Computing\",\"volume\":\"19 1\",\"pages\":\"8:1-8:19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Symposium on High Performance Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.DISC.2022.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Symposium on High Performance Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.DISC.2022.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们给出了实用、高效的算法来自动确定[Θ(log n), Θ(n)]区域内给定局部可检图问题的渐近分布轮复杂度。提出了一种求解无根规则树的算法和一种求解有根规则树的算法。该算法以局部可查标注问题的描述作为输入,运行时间是问题描述大小的多项式。算法决定问题是否在O (log n)轮内可解。如果不是,则已知对于某些k = 1,2,…,复杂度必须为Θ(n 1 /k)。在这种情况下,算法也会输出指数k的正确值。在O (log n)情况下的根树中,我们可以通过使用先前工作中的算法进一步确定确切的复杂度类别;对于无根树,在O (log n)区域进行更细粒度的分类仍然是一个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Classification of Locally Checkable Problems in Regular Trees
We give practical, efficient algorithms that automatically determine the asymptotic distributed round complexity of a given locally checkable graph problem in the [Θ(log n ) , Θ( n )] region, in two settings. We present one algorithm for unrooted regular trees and another algorithm for rooted regular trees. The algorithms take the description of a locally checkable labeling problem as input, and the running time is polynomial in the size of the problem description. The algorithms decide if the problem is solvable in O (log n ) rounds. If not, it is known that the complexity has to be Θ( n 1 /k ) for some k = 1 , 2 , . . . , and in this case the algorithms also output the right value of the exponent k . In rooted trees in the O (log n ) case we can then further determine the exact complexity class by using algorithms from prior work; for unrooted trees the more fine-grained classification in the O (log n ) region remains an open question.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信