基于贪婪优化1-call@k的潜在子主题关联模型的多样化检索

S. Sanner, Shengbo Guo, T. Graepel, S. Kharazmi, Sarvnaz Karimi
{"title":"基于贪婪优化1-call@k的潜在子主题关联模型的多样化检索","authors":"S. Sanner, Shengbo Guo, T. Graepel, S. Kharazmi, Sarvnaz Karimi","doi":"10.1145/2063576.2063869","DOIUrl":null,"url":null,"abstract":"It has been previously observed that optimization of the 1-call@k relevance objective (i.e., a set-based objective that is 1 if at least one document is relevant, otherwise 0) empirically correlates with diverse retrieval. In this paper, we proceed one step further and show theoretically that greedily optimizing expected 1-call@k w.r.t. a latent subtopic model of binary relevance leads to a diverse retrieval algorithm sharing many features of existing diversification approaches. This new result is complementary to a variety of diverse retrieval algorithms derived from alternate rank-based relevance criteria such as average precision and reciprocal rank. As such, the derivation presented here for expected 1-call@k provides a novel theoretical perspective on the emergence of diversity via a latent subtopic model of relevance --- an idea underlying both ambiguous and faceted subtopic retrieval that have been used to motivate diverse retrieval.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"38 1","pages":"1977-1980"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Diverse retrieval via greedy optimization of expected 1-call@k in a latent subtopic relevance model\",\"authors\":\"S. Sanner, Shengbo Guo, T. Graepel, S. Kharazmi, Sarvnaz Karimi\",\"doi\":\"10.1145/2063576.2063869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been previously observed that optimization of the 1-call@k relevance objective (i.e., a set-based objective that is 1 if at least one document is relevant, otherwise 0) empirically correlates with diverse retrieval. In this paper, we proceed one step further and show theoretically that greedily optimizing expected 1-call@k w.r.t. a latent subtopic model of binary relevance leads to a diverse retrieval algorithm sharing many features of existing diversification approaches. This new result is complementary to a variety of diverse retrieval algorithms derived from alternate rank-based relevance criteria such as average precision and reciprocal rank. As such, the derivation presented here for expected 1-call@k provides a novel theoretical perspective on the emergence of diversity via a latent subtopic model of relevance --- an idea underlying both ambiguous and faceted subtopic retrieval that have been used to motivate diverse retrieval.\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"38 1\",\"pages\":\"1977-1980\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063576.2063869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

以前已经观察到,1-call@k相关目标的优化(即,如果至少有一个文档相关,则基于集的目标为1,否则为0)与多种检索经验相关。在本文中,我们更进一步,从理论上证明了贪婪地优化期望1-call@k w.r.t.一个二元关联的潜在子主题模型导致了一个多样化的检索算法,它共享了现有多样化方法的许多特征。这个新的结果是补充了各种不同的检索算法,这些算法来源于基于秩的相关标准,如平均精度和倒数秩。因此,本文对预期1-call@k的推导提供了一种新的理论视角,通过潜在的关联子主题模型来研究多样性的出现——这是一种隐含在模糊和多面子主题检索基础上的思想,已被用于激励多样化检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diverse retrieval via greedy optimization of expected 1-call@k in a latent subtopic relevance model
It has been previously observed that optimization of the 1-call@k relevance objective (i.e., a set-based objective that is 1 if at least one document is relevant, otherwise 0) empirically correlates with diverse retrieval. In this paper, we proceed one step further and show theoretically that greedily optimizing expected 1-call@k w.r.t. a latent subtopic model of binary relevance leads to a diverse retrieval algorithm sharing many features of existing diversification approaches. This new result is complementary to a variety of diverse retrieval algorithms derived from alternate rank-based relevance criteria such as average precision and reciprocal rank. As such, the derivation presented here for expected 1-call@k provides a novel theoretical perspective on the emergence of diversity via a latent subtopic model of relevance --- an idea underlying both ambiguous and faceted subtopic retrieval that have been used to motivate diverse retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信