{"title":"模拟困难语音在临床语音应用中的训练数据增强","authors":"Yishan Jiao, Ming Tu, Visar Berisha, J. Liss","doi":"10.1109/ICASSP.2018.8462290","DOIUrl":null,"url":null,"abstract":"Training machine learning algorithms for speech applications requires large, labeled training data sets. This is problematic for clinical applications where obtaining such data is prohibitively expensive because of privacy concerns or lack of access. As a result, clinical speech applications typically rely on small data sets with only tens of speakers. In this paper, we propose a method for simulating training data for clinical applications by transforming healthy speech to dysarthric speech using adversarial training. We evaluate the efficacy of our approach using both objective and subjective criteria. We present the transformed samples to five experienced speech-language pathologists (SLPs) and ask them to identify the samples as healthy or dysarthric. The results reveal that the SLPs identify the transformed speech as dysarthric 65% of the time. In a pilot classification experiment, we show that by using the simulated speech samples to balance an existing dataset, the classification accuracy improves by rv 10% after data augmentation.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"253 1","pages":"6009-6013"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Simulating Dysarthric Speech for Training Data Augmentation in Clinical Speech Applications\",\"authors\":\"Yishan Jiao, Ming Tu, Visar Berisha, J. Liss\",\"doi\":\"10.1109/ICASSP.2018.8462290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Training machine learning algorithms for speech applications requires large, labeled training data sets. This is problematic for clinical applications where obtaining such data is prohibitively expensive because of privacy concerns or lack of access. As a result, clinical speech applications typically rely on small data sets with only tens of speakers. In this paper, we propose a method for simulating training data for clinical applications by transforming healthy speech to dysarthric speech using adversarial training. We evaluate the efficacy of our approach using both objective and subjective criteria. We present the transformed samples to five experienced speech-language pathologists (SLPs) and ask them to identify the samples as healthy or dysarthric. The results reveal that the SLPs identify the transformed speech as dysarthric 65% of the time. In a pilot classification experiment, we show that by using the simulated speech samples to balance an existing dataset, the classification accuracy improves by rv 10% after data augmentation.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"253 1\",\"pages\":\"6009-6013\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8462290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulating Dysarthric Speech for Training Data Augmentation in Clinical Speech Applications
Training machine learning algorithms for speech applications requires large, labeled training data sets. This is problematic for clinical applications where obtaining such data is prohibitively expensive because of privacy concerns or lack of access. As a result, clinical speech applications typically rely on small data sets with only tens of speakers. In this paper, we propose a method for simulating training data for clinical applications by transforming healthy speech to dysarthric speech using adversarial training. We evaluate the efficacy of our approach using both objective and subjective criteria. We present the transformed samples to five experienced speech-language pathologists (SLPs) and ask them to identify the samples as healthy or dysarthric. The results reveal that the SLPs identify the transformed speech as dysarthric 65% of the time. In a pilot classification experiment, we show that by using the simulated speech samples to balance an existing dataset, the classification accuracy improves by rv 10% after data augmentation.