一类无界源多向气体系统熵解的存在性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
C. Klingenberg, Yun-guang Lu
{"title":"一类无界源多向气体系统熵解的存在性","authors":"C. Klingenberg, Yun-guang Lu","doi":"10.23952/jnva.7.2023.3.08","DOIUrl":null,"url":null,"abstract":"In this paper, we first apply the viscosity-flux approximation method coupled with the maximum principle to obtain the a-priori L∞ estimates for the approximation solutions of the polytropic gas dynamics system with a class of unbounded sources. The key idea is to employ suitable bounded functions B(x, t), C(x, t) to control these unbounded source terms. Second, we prove the pointwise convergence of the approximation solutions by using the compactness framework from the compensated compactness theory and obtain the global existence of entropy solutions for any adiabatic exponent γ > 1.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of entropy solutions to system of polytropic gas with a class of unbounded sources\",\"authors\":\"C. Klingenberg, Yun-guang Lu\",\"doi\":\"10.23952/jnva.7.2023.3.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first apply the viscosity-flux approximation method coupled with the maximum principle to obtain the a-priori L∞ estimates for the approximation solutions of the polytropic gas dynamics system with a class of unbounded sources. The key idea is to employ suitable bounded functions B(x, t), C(x, t) to control these unbounded source terms. Second, we prove the pointwise convergence of the approximation solutions by using the compactness framework from the compensated compactness theory and obtain the global existence of entropy solutions for any adiabatic exponent γ > 1.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.23952/jnva.7.2023.3.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23952/jnva.7.2023.3.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文首先应用黏度-通量近似法结合极大值原理,得到了一类无界源多向气体动力学系统近似解的先验L∞估计。关键思想是使用合适的有界函数B(x, t), C(x, t)来控制这些无界源项。其次,利用补偿紧性理论中的紧性框架证明了近似解的点向收敛性,得到了任意绝热指数γ > 1的熵解的整体存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of entropy solutions to system of polytropic gas with a class of unbounded sources
In this paper, we first apply the viscosity-flux approximation method coupled with the maximum principle to obtain the a-priori L∞ estimates for the approximation solutions of the polytropic gas dynamics system with a class of unbounded sources. The key idea is to employ suitable bounded functions B(x, t), C(x, t) to control these unbounded source terms. Second, we prove the pointwise convergence of the approximation solutions by using the compactness framework from the compensated compactness theory and obtain the global existence of entropy solutions for any adiabatic exponent γ > 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信