通过几何分辨率连接

Mahmoud Abo Khamis, H. Ngo, Christopher Ré, A. Rudra
{"title":"通过几何分辨率连接","authors":"Mahmoud Abo Khamis, H. Ngo, Christopher Ré, A. Rudra","doi":"10.1145/2967101","DOIUrl":null,"url":null,"abstract":"We present a simple geometric framework for the relational join. Using this framework, we design an algorithm that achieves the fractional hypertree-width bound, which generalizes classical and recent worst-case algorithmic results on computing joins. In addition, we use our framework and the same algorithm to show a series of what are colloquially known as beyond worst-case results. The framework allows us to prove results for data stored in BTrees, multidimensional data structures, and even multiple indices per table. A key idea in our framework is formalizing the inference one does with an index as a type of geometric resolution, transforming the algorithmic problem of computing joins to a geometric problem. Our notion of geometric resolution can be viewed as a geometric analog of logical resolution. In addition to the geometry and logic connections, our algorithm can also be thought of as backtracking search with memoization.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"45 1","pages":"1 - 45"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Joins via Geometric Resolutions\",\"authors\":\"Mahmoud Abo Khamis, H. Ngo, Christopher Ré, A. Rudra\",\"doi\":\"10.1145/2967101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple geometric framework for the relational join. Using this framework, we design an algorithm that achieves the fractional hypertree-width bound, which generalizes classical and recent worst-case algorithmic results on computing joins. In addition, we use our framework and the same algorithm to show a series of what are colloquially known as beyond worst-case results. The framework allows us to prove results for data stored in BTrees, multidimensional data structures, and even multiple indices per table. A key idea in our framework is formalizing the inference one does with an index as a type of geometric resolution, transforming the algorithmic problem of computing joins to a geometric problem. Our notion of geometric resolution can be viewed as a geometric analog of logical resolution. In addition to the geometry and logic connections, our algorithm can also be thought of as backtracking search with memoization.\",\"PeriodicalId\":6983,\"journal\":{\"name\":\"ACM Transactions on Database Systems (TODS)\",\"volume\":\"45 1\",\"pages\":\"1 - 45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Database Systems (TODS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2967101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2967101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们为关系连接提供了一个简单的几何框架。利用这个框架,我们设计了一个实现分数超树宽度边界的算法,它推广了经典和最近的最坏情况算法在计算连接上的结果。此外,我们使用我们的框架和相同的算法来显示一系列通俗地称为超越最坏情况的结果。该框架允许我们证明存储在b树、多维数据结构甚至每个表的多个索引中的数据的结果。我们框架中的一个关键思想是将索引的推理形式化为一种几何分辨率,将计算连接的算法问题转化为几何问题。我们的几何分辨概念可以看作是逻辑分辨的几何类比。除了几何和逻辑连接之外,我们的算法还可以被认为是带记忆的回溯搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joins via Geometric Resolutions
We present a simple geometric framework for the relational join. Using this framework, we design an algorithm that achieves the fractional hypertree-width bound, which generalizes classical and recent worst-case algorithmic results on computing joins. In addition, we use our framework and the same algorithm to show a series of what are colloquially known as beyond worst-case results. The framework allows us to prove results for data stored in BTrees, multidimensional data structures, and even multiple indices per table. A key idea in our framework is formalizing the inference one does with an index as a type of geometric resolution, transforming the algorithmic problem of computing joins to a geometric problem. Our notion of geometric resolution can be viewed as a geometric analog of logical resolution. In addition to the geometry and logic connections, our algorithm can also be thought of as backtracking search with memoization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信