{"title":"未取代及部分取代聚吡咯性质的基准研究","authors":"C. Ibeji, I. Adejoro, B. B. Adeleke","doi":"10.4172/2161-0398.1000193","DOIUrl":null,"url":null,"abstract":"The geometric, thermodynamic, electronic and absorption properties of Pyrrole and some of its derivatives have been carried out using CCSD/6-311++G(d,p)/STO-3G, TD-DFT and DFT/B3LYP/6-31G(d) from monomer to five repeating units. Substitution by a methyl group at C3 and functional groups at C4 cause small changes in atomic distances. The estimated inter-ring bond length based on Badger's rule of 1.41 A indicates that the average structure is about 30% quinoid. The geometries indicates that strong conjugate effects and effective aromatic structure are formed in the order Pyrrole>MPCam>MPC. The oligomers of simulated compounds have been extrapolated to polymer through second-degree polynomial-fit equation with r2 value ranging from 0.96-0.99. Calculated band gap of pyrrole, which is 2.9 eV, significantly correlates with the experimental value which ranges from 2.9-3.2 eV and this corresponds to π-π* transition energies. Natural bond orbitals of polypyrrole reveals that the wavefunctions contain dynamic correlations (single reference), closed shell character while substituted polypyrrole are multireference (static correlation), open shell character.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":"70 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Benchmark Study on the Properties of Unsubstituted and Some Substituted Polypyrroles\",\"authors\":\"C. Ibeji, I. Adejoro, B. B. Adeleke\",\"doi\":\"10.4172/2161-0398.1000193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geometric, thermodynamic, electronic and absorption properties of Pyrrole and some of its derivatives have been carried out using CCSD/6-311++G(d,p)/STO-3G, TD-DFT and DFT/B3LYP/6-31G(d) from monomer to five repeating units. Substitution by a methyl group at C3 and functional groups at C4 cause small changes in atomic distances. The estimated inter-ring bond length based on Badger's rule of 1.41 A indicates that the average structure is about 30% quinoid. The geometries indicates that strong conjugate effects and effective aromatic structure are formed in the order Pyrrole>MPCam>MPC. The oligomers of simulated compounds have been extrapolated to polymer through second-degree polynomial-fit equation with r2 value ranging from 0.96-0.99. Calculated band gap of pyrrole, which is 2.9 eV, significantly correlates with the experimental value which ranges from 2.9-3.2 eV and this corresponds to π-π* transition energies. Natural bond orbitals of polypyrrole reveals that the wavefunctions contain dynamic correlations (single reference), closed shell character while substituted polypyrrole are multireference (static correlation), open shell character.\",\"PeriodicalId\":94103,\"journal\":{\"name\":\"Journal of physical chemistry & biophysics\",\"volume\":\"70 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physical chemistry & biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2161-0398.1000193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physical chemistry & biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-0398.1000193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Benchmark Study on the Properties of Unsubstituted and Some Substituted Polypyrroles
The geometric, thermodynamic, electronic and absorption properties of Pyrrole and some of its derivatives have been carried out using CCSD/6-311++G(d,p)/STO-3G, TD-DFT and DFT/B3LYP/6-31G(d) from monomer to five repeating units. Substitution by a methyl group at C3 and functional groups at C4 cause small changes in atomic distances. The estimated inter-ring bond length based on Badger's rule of 1.41 A indicates that the average structure is about 30% quinoid. The geometries indicates that strong conjugate effects and effective aromatic structure are formed in the order Pyrrole>MPCam>MPC. The oligomers of simulated compounds have been extrapolated to polymer through second-degree polynomial-fit equation with r2 value ranging from 0.96-0.99. Calculated band gap of pyrrole, which is 2.9 eV, significantly correlates with the experimental value which ranges from 2.9-3.2 eV and this corresponds to π-π* transition energies. Natural bond orbitals of polypyrrole reveals that the wavefunctions contain dynamic correlations (single reference), closed shell character while substituted polypyrrole are multireference (static correlation), open shell character.