BS的亲友(1,2)

IF 0.1 Q4 MATHEMATICS
C. F. Miller III
{"title":"BS的亲友(1,2)","authors":"C. F. Miller III","doi":"10.1515/gcc-2014-0006","DOIUrl":null,"url":null,"abstract":"Algorithms, constructions and examples are of central interest in combinatorial and geometric group theory. Teaching experience and, more recently, preparing a historical essay have led me to think the familiar group BS(1, 2) is an example of fundamental importance. The purpose of this note is to make a case for this point of view.We recall several interesting constructions and important examples of groups related to BS(1, 2), and indicate why certain of these groups played a key role in showing the word problem for nitely presented groups is unsolvable.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"32 1","pages":"73 - 80"},"PeriodicalIF":0.1000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Friends and relatives of BS(1,2)\",\"authors\":\"C. F. Miller III\",\"doi\":\"10.1515/gcc-2014-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithms, constructions and examples are of central interest in combinatorial and geometric group theory. Teaching experience and, more recently, preparing a historical essay have led me to think the familiar group BS(1, 2) is an example of fundamental importance. The purpose of this note is to make a case for this point of view.We recall several interesting constructions and important examples of groups related to BS(1, 2), and indicate why certain of these groups played a key role in showing the word problem for nitely presented groups is unsolvable.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"32 1\",\"pages\":\"73 - 80\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2014-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2014-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

算法、构造和实例是组合和几何群论的核心内容。教学经验,以及最近准备一篇历史论文,让我认为熟悉的BS(1,2)组是一个具有根本重要性的例子。这篇笔记的目的是为这一观点做一个论证。我们回顾了几个有趣的结构和与BS相关的组的重要例子(1,2),并指出为什么这些组中的某些组在显示完全呈现的组的单词问题是无法解决的过程中发挥了关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Friends and relatives of BS(1,2)
Algorithms, constructions and examples are of central interest in combinatorial and geometric group theory. Teaching experience and, more recently, preparing a historical essay have led me to think the familiar group BS(1, 2) is an example of fundamental importance. The purpose of this note is to make a case for this point of view.We recall several interesting constructions and important examples of groups related to BS(1, 2), and indicate why certain of these groups played a key role in showing the word problem for nitely presented groups is unsolvable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信