{"title":"基于弱监督多图学习的视觉重排序","authors":"Cheng Deng, R. Ji, W. Liu, D. Tao, Xinbo Gao","doi":"10.1109/ICCV.2013.323","DOIUrl":null,"url":null,"abstract":"Visual reranking has been widely deployed to refine the quality of conventional content-based image retrieval engines. The current trend lies in employing a crowd of retrieved results stemming from multiple feature modalities to boost the overall performance of visual reranking. However, a major challenge pertaining to current reranking methods is how to take full advantage of the complementary property of distinct feature modalities. Given a query image and one feature modality, a regular visual reranking framework treats the top-ranked images as pseudo positive instances which are inevitably noisy, difficult to reveal this complementary property, and thus lead to inferior ranking performance. This paper proposes a novel image reranking approach by introducing a Co-Regularized Multi-Graph Learning (Co-RMGL) framework, in which the intra-graph and inter-graph constraints are simultaneously imposed to encode affinities in a single graph and consistency across different graphs. Moreover, weakly supervised learning driven by image attributes is performed to denoise the pseudo-labeled instances, thereby highlighting the unique strength of individual feature modality. Meanwhile, such learning can yield a few anchors in graphs that vitally enable the alignment and fusion of multiple graphs. As a result, an edge weight matrix learned from the fused graph automatically gives the ordering to the initially retrieved results. We evaluate our approach on four benchmark image retrieval datasets, demonstrating a significant performance gain over the state-of-the-arts.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Visual Reranking through Weakly Supervised Multi-graph Learning\",\"authors\":\"Cheng Deng, R. Ji, W. Liu, D. Tao, Xinbo Gao\",\"doi\":\"10.1109/ICCV.2013.323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual reranking has been widely deployed to refine the quality of conventional content-based image retrieval engines. The current trend lies in employing a crowd of retrieved results stemming from multiple feature modalities to boost the overall performance of visual reranking. However, a major challenge pertaining to current reranking methods is how to take full advantage of the complementary property of distinct feature modalities. Given a query image and one feature modality, a regular visual reranking framework treats the top-ranked images as pseudo positive instances which are inevitably noisy, difficult to reveal this complementary property, and thus lead to inferior ranking performance. This paper proposes a novel image reranking approach by introducing a Co-Regularized Multi-Graph Learning (Co-RMGL) framework, in which the intra-graph and inter-graph constraints are simultaneously imposed to encode affinities in a single graph and consistency across different graphs. Moreover, weakly supervised learning driven by image attributes is performed to denoise the pseudo-labeled instances, thereby highlighting the unique strength of individual feature modality. Meanwhile, such learning can yield a few anchors in graphs that vitally enable the alignment and fusion of multiple graphs. As a result, an edge weight matrix learned from the fused graph automatically gives the ordering to the initially retrieved results. We evaluate our approach on four benchmark image retrieval datasets, demonstrating a significant performance gain over the state-of-the-arts.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual Reranking through Weakly Supervised Multi-graph Learning
Visual reranking has been widely deployed to refine the quality of conventional content-based image retrieval engines. The current trend lies in employing a crowd of retrieved results stemming from multiple feature modalities to boost the overall performance of visual reranking. However, a major challenge pertaining to current reranking methods is how to take full advantage of the complementary property of distinct feature modalities. Given a query image and one feature modality, a regular visual reranking framework treats the top-ranked images as pseudo positive instances which are inevitably noisy, difficult to reveal this complementary property, and thus lead to inferior ranking performance. This paper proposes a novel image reranking approach by introducing a Co-Regularized Multi-Graph Learning (Co-RMGL) framework, in which the intra-graph and inter-graph constraints are simultaneously imposed to encode affinities in a single graph and consistency across different graphs. Moreover, weakly supervised learning driven by image attributes is performed to denoise the pseudo-labeled instances, thereby highlighting the unique strength of individual feature modality. Meanwhile, such learning can yield a few anchors in graphs that vitally enable the alignment and fusion of multiple graphs. As a result, an edge weight matrix learned from the fused graph automatically gives the ordering to the initially retrieved results. We evaluate our approach on four benchmark image retrieval datasets, demonstrating a significant performance gain over the state-of-the-arts.