A. Ottaviani, C. Tesauro, Søren Fjelstrup, R. Hougaard, P. Fiorani, A. Desideri, B. Knudsen, Y. Ho
{"title":"从“难以破坏的细胞”中提取活性酶:基于rca的测定方法的评价","authors":"A. Ottaviani, C. Tesauro, Søren Fjelstrup, R. Hougaard, P. Fiorani, A. Desideri, B. Knudsen, Y. Ho","doi":"10.1109/ICSENS.2014.6985363","DOIUrl":null,"url":null,"abstract":"We present the utilization of a rolling circle amplification (RCA) based assay to investigate the extraction efficiency of active enzymes from a class of “hard-to-break” cells, yeast Saccaramyces cerevisiae. Current analyses of microorganisms, such as pathogenic bacteria, parasites or particular life stages of microorganisms (e.g. spores from bacteria or fungi) is hampered by the lack of efficient lysis protocols that preserve the activity and integrity of the cellular content. Presented herein is a flexible scheme to screen lysis protocols for active enzyme extraction. We also report a gentle yet effective approach for extraction of active enzymes by entrapping cells in microdroplets. Combined effort of optimized extraction protocols and effective analytical approaches is expected to generate impact in future disease diagnosis and environmental safety.","PeriodicalId":13244,"journal":{"name":"IEEE SENSORS 2014 Proceedings","volume":"199 1","pages":"1753-1756"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of active enzymes from “hard-to-break-cells”: Evaluation by a RCA-based assay\",\"authors\":\"A. Ottaviani, C. Tesauro, Søren Fjelstrup, R. Hougaard, P. Fiorani, A. Desideri, B. Knudsen, Y. Ho\",\"doi\":\"10.1109/ICSENS.2014.6985363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the utilization of a rolling circle amplification (RCA) based assay to investigate the extraction efficiency of active enzymes from a class of “hard-to-break” cells, yeast Saccaramyces cerevisiae. Current analyses of microorganisms, such as pathogenic bacteria, parasites or particular life stages of microorganisms (e.g. spores from bacteria or fungi) is hampered by the lack of efficient lysis protocols that preserve the activity and integrity of the cellular content. Presented herein is a flexible scheme to screen lysis protocols for active enzyme extraction. We also report a gentle yet effective approach for extraction of active enzymes by entrapping cells in microdroplets. Combined effort of optimized extraction protocols and effective analytical approaches is expected to generate impact in future disease diagnosis and environmental safety.\",\"PeriodicalId\":13244,\"journal\":{\"name\":\"IEEE SENSORS 2014 Proceedings\",\"volume\":\"199 1\",\"pages\":\"1753-1756\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE SENSORS 2014 Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2014.6985363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE SENSORS 2014 Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2014.6985363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extraction of active enzymes from “hard-to-break-cells”: Evaluation by a RCA-based assay
We present the utilization of a rolling circle amplification (RCA) based assay to investigate the extraction efficiency of active enzymes from a class of “hard-to-break” cells, yeast Saccaramyces cerevisiae. Current analyses of microorganisms, such as pathogenic bacteria, parasites or particular life stages of microorganisms (e.g. spores from bacteria or fungi) is hampered by the lack of efficient lysis protocols that preserve the activity and integrity of the cellular content. Presented herein is a flexible scheme to screen lysis protocols for active enzyme extraction. We also report a gentle yet effective approach for extraction of active enzymes by entrapping cells in microdroplets. Combined effort of optimized extraction protocols and effective analytical approaches is expected to generate impact in future disease diagnosis and environmental safety.