{"title":"布尔矩阵的形式概念抽样分解","authors":"P. Osicka, Martin Trnecka","doi":"10.1145/3132847.3133054","DOIUrl":null,"url":null,"abstract":"Finding interesting patterns is a classical problem in data mining. Boolean matrix decomposition is nowadays a standard tool that can find a set of patterns-also called factors-in Boolean data that explain the data well. We describe and experimentally evaluate a probabilistic algorithm for Boolean matrix decomposition problem. The algorithm is derived from GreCon algorithm which uses formal concepts-maximal rectangles or tiles-as factors in order to find a decomposition. We change the core of GreCon by substituting a sampling procedure for a deterministic computation of suitable formal concepts. This allows us to alleviate the greedy nature of GreCon, creates a possibility to bypass some of the its pitfalls and to preserve its features, e.g. an ability to explain the entire data.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"29 11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Boolean Matrix Decomposition by Formal Concept Sampling\",\"authors\":\"P. Osicka, Martin Trnecka\",\"doi\":\"10.1145/3132847.3133054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding interesting patterns is a classical problem in data mining. Boolean matrix decomposition is nowadays a standard tool that can find a set of patterns-also called factors-in Boolean data that explain the data well. We describe and experimentally evaluate a probabilistic algorithm for Boolean matrix decomposition problem. The algorithm is derived from GreCon algorithm which uses formal concepts-maximal rectangles or tiles-as factors in order to find a decomposition. We change the core of GreCon by substituting a sampling procedure for a deterministic computation of suitable formal concepts. This allows us to alleviate the greedy nature of GreCon, creates a possibility to bypass some of the its pitfalls and to preserve its features, e.g. an ability to explain the entire data.\",\"PeriodicalId\":20449,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"volume\":\"29 11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132847.3133054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Boolean Matrix Decomposition by Formal Concept Sampling
Finding interesting patterns is a classical problem in data mining. Boolean matrix decomposition is nowadays a standard tool that can find a set of patterns-also called factors-in Boolean data that explain the data well. We describe and experimentally evaluate a probabilistic algorithm for Boolean matrix decomposition problem. The algorithm is derived from GreCon algorithm which uses formal concepts-maximal rectangles or tiles-as factors in order to find a decomposition. We change the core of GreCon by substituting a sampling procedure for a deterministic computation of suitable formal concepts. This allows us to alleviate the greedy nature of GreCon, creates a possibility to bypass some of the its pitfalls and to preserve its features, e.g. an ability to explain the entire data.