Bagging是一种小数据集现象

N. Chawla, Thomas E. Moore, K. Bowyer, L. Hall, C. Springer, W. Kegelmeyer
{"title":"Bagging是一种小数据集现象","authors":"N. Chawla, Thomas E. Moore, K. Bowyer, L. Hall, C. Springer, W. Kegelmeyer","doi":"10.1109/CVPR.2001.991030","DOIUrl":null,"url":null,"abstract":"Bagging forms a committee of classifiers by bootstrap aggregation of training sets from a pool of training data. A simple alternative to bagging is to partition the data into disjoint subsets. Experiments on various datasets show that, given the same size partitions and bags, disjoint partitions result in better performance than bootstrap aggregates (bags). Many applications (e.g., protein structure prediction) involve the use of datasets that are too large to handle in the memory of a typical computer. Our results indicate that, in such applications, the simple approach of creating a committee of classifiers from disjoint partitions is preferred over the more complex approach of bagging.","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":"143 1","pages":"684-689"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Bagging Is a Small-Data-Set Phenomenon\",\"authors\":\"N. Chawla, Thomas E. Moore, K. Bowyer, L. Hall, C. Springer, W. Kegelmeyer\",\"doi\":\"10.1109/CVPR.2001.991030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bagging forms a committee of classifiers by bootstrap aggregation of training sets from a pool of training data. A simple alternative to bagging is to partition the data into disjoint subsets. Experiments on various datasets show that, given the same size partitions and bags, disjoint partitions result in better performance than bootstrap aggregates (bags). Many applications (e.g., protein structure prediction) involve the use of datasets that are too large to handle in the memory of a typical computer. Our results indicate that, in such applications, the simple approach of creating a committee of classifiers from disjoint partitions is preferred over the more complex approach of bagging.\",\"PeriodicalId\":89346,\"journal\":{\"name\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"volume\":\"143 1\",\"pages\":\"684-689\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2001.991030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2001.991030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

Bagging通过对训练数据池中的训练集进行自举聚合,形成一个分类器委员会。打包的一个简单替代方法是将数据划分为不相交的子集。在不同数据集上的实验表明,在给定相同大小的分区和包的情况下,不连接的分区比自举聚合(包)的性能更好。许多应用程序(例如,蛋白质结构预测)涉及使用数据集,这些数据集太大,无法在典型计算机的内存中处理。我们的结果表明,在这样的应用中,从不相交的分区中创建分类器委员会的简单方法优于更复杂的bagging方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bagging Is a Small-Data-Set Phenomenon
Bagging forms a committee of classifiers by bootstrap aggregation of training sets from a pool of training data. A simple alternative to bagging is to partition the data into disjoint subsets. Experiments on various datasets show that, given the same size partitions and bags, disjoint partitions result in better performance than bootstrap aggregates (bags). Many applications (e.g., protein structure prediction) involve the use of datasets that are too large to handle in the memory of a typical computer. Our results indicate that, in such applications, the simple approach of creating a committee of classifiers from disjoint partitions is preferred over the more complex approach of bagging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信