利用在线遗传算法进行定性系统辨识

C.H Lo, K.M Chow, Y.K Wong, A.B Rad
{"title":"利用在线遗传算法进行定性系统辨识","authors":"C.H Lo,&nbsp;K.M Chow,&nbsp;Y.K Wong,&nbsp;A.B Rad","doi":"10.1016/S0928-4869(01)00026-X","DOIUrl":null,"url":null,"abstract":"<div><p>The major problem in building qualitative models via on-line qualitative system identification is how to filter the spurious constraints that are generated from the qualitative reasoning technique. This paper proposes a solution to this problem by an integration of genetic algorithms (GA) and qualitative reasoning. The paper will demonstrate the use of qualitative reasoning to partition the input quantity space into different subsystems, and implementation of GAs to filter and optimize the predicted constraints. The proposed method is verified by simulated examples that suggest the algorithm converges to the optimal point with high speed.</p></div>","PeriodicalId":101162,"journal":{"name":"Simulation Practice and Theory","volume":"8 6","pages":"Pages 415-431"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0928-4869(01)00026-X","citationCount":"3","resultStr":"{\"title\":\"Qualitative system identification with the use of on-line genetic algorithms\",\"authors\":\"C.H Lo,&nbsp;K.M Chow,&nbsp;Y.K Wong,&nbsp;A.B Rad\",\"doi\":\"10.1016/S0928-4869(01)00026-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The major problem in building qualitative models via on-line qualitative system identification is how to filter the spurious constraints that are generated from the qualitative reasoning technique. This paper proposes a solution to this problem by an integration of genetic algorithms (GA) and qualitative reasoning. The paper will demonstrate the use of qualitative reasoning to partition the input quantity space into different subsystems, and implementation of GAs to filter and optimize the predicted constraints. The proposed method is verified by simulated examples that suggest the algorithm converges to the optimal point with high speed.</p></div>\",\"PeriodicalId\":101162,\"journal\":{\"name\":\"Simulation Practice and Theory\",\"volume\":\"8 6\",\"pages\":\"Pages 415-431\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0928-4869(01)00026-X\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Practice and Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092848690100026X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Practice and Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092848690100026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通过在线定性系统识别建立定性模型的主要问题是如何过滤由定性推理技术产生的虚假约束。本文提出了将遗传算法与定性推理相结合的方法来解决这一问题。本文将演示使用定性推理将输入数量空间划分为不同的子系统,并实现GAs来过滤和优化预测约束。仿真算例验证了该方法的有效性,表明该算法收敛速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative system identification with the use of on-line genetic algorithms

The major problem in building qualitative models via on-line qualitative system identification is how to filter the spurious constraints that are generated from the qualitative reasoning technique. This paper proposes a solution to this problem by an integration of genetic algorithms (GA) and qualitative reasoning. The paper will demonstrate the use of qualitative reasoning to partition the input quantity space into different subsystems, and implementation of GAs to filter and optimize the predicted constraints. The proposed method is verified by simulated examples that suggest the algorithm converges to the optimal point with high speed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信