{"title":"复制及其在弱收敛中的应用","authors":"C. Dong, M. Kouritzin","doi":"10.7939/R3K06XF1W","DOIUrl":null,"url":null,"abstract":"Herein, a methodology is developed to replicate functions, measures and stochastic processes onto a compact metric space. Many results are easily established for the replica objects and then transferred back to the original ones. Two problems are solved within to demonstrate the method: (1) Finite-dimensional convergence for processes living on general topological spaces. (2) New tightness and relative compactness criteria are given for the Skorokhod space $D(\\mathbf{R}^{+};E)$ with $E$ being a general Tychonoff space. The methods herein are also used in companion papers to establish the: (3) existence of, uniqueness of and convergence to martingale problem solutions, (4) classical Fujisaki-Kallianpur-Kunita and Duncan-Mortensen-Zakai filtering equations and stationary filters, (5) finite-dimensional convergence to stationary signal-filter pairs, (6) invariant measures of Markov processes, and (7) Ray-Knight theory all in general settings.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Replication and Its Application to Weak Convergence\",\"authors\":\"C. Dong, M. Kouritzin\",\"doi\":\"10.7939/R3K06XF1W\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, a methodology is developed to replicate functions, measures and stochastic processes onto a compact metric space. Many results are easily established for the replica objects and then transferred back to the original ones. Two problems are solved within to demonstrate the method: (1) Finite-dimensional convergence for processes living on general topological spaces. (2) New tightness and relative compactness criteria are given for the Skorokhod space $D(\\\\mathbf{R}^{+};E)$ with $E$ being a general Tychonoff space. The methods herein are also used in companion papers to establish the: (3) existence of, uniqueness of and convergence to martingale problem solutions, (4) classical Fujisaki-Kallianpur-Kunita and Duncan-Mortensen-Zakai filtering equations and stationary filters, (5) finite-dimensional convergence to stationary signal-filter pairs, (6) invariant measures of Markov processes, and (7) Ray-Knight theory all in general settings.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7939/R3K06XF1W\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7939/R3K06XF1W","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Replication and Its Application to Weak Convergence
Herein, a methodology is developed to replicate functions, measures and stochastic processes onto a compact metric space. Many results are easily established for the replica objects and then transferred back to the original ones. Two problems are solved within to demonstrate the method: (1) Finite-dimensional convergence for processes living on general topological spaces. (2) New tightness and relative compactness criteria are given for the Skorokhod space $D(\mathbf{R}^{+};E)$ with $E$ being a general Tychonoff space. The methods herein are also used in companion papers to establish the: (3) existence of, uniqueness of and convergence to martingale problem solutions, (4) classical Fujisaki-Kallianpur-Kunita and Duncan-Mortensen-Zakai filtering equations and stationary filters, (5) finite-dimensional convergence to stationary signal-filter pairs, (6) invariant measures of Markov processes, and (7) Ray-Knight theory all in general settings.