A. A. Daryakenari, Davood Hosseini, A. Apostoluk, Christoph R. Muller, J. Delaunay
{"title":"电泳制备纳米涂层厚度对乙醇电氧化性能的影响","authors":"A. A. Daryakenari, Davood Hosseini, A. Apostoluk, Christoph R. Muller, J. Delaunay","doi":"10.1109/NANO.2016.7751330","DOIUrl":null,"url":null,"abstract":"The catalyst support layer is fabricated by applying a DC electrophoretic deposition on a colloid consisting of dispersed nanographitic flakes along with magnesium ions in isopropyl alcohol. The thickness and conductivity of the deposited layers are controlled by varying the time of the voltage application in the electrophoretic deposition EPD technique. The catalyst supports are decorated by sputtering palladium nanostructures serving as the catalyst. The fabricated support layer with the optimum thickness exhibits an improved conductivity and electro-oxidation performance attaining 800 mA/cm2 per mg of palladium.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"4 1","pages":"354-356"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of the thickness of nanographitic coatings fabricated by electrophoretic deposition on ethanol electro-oxidation\",\"authors\":\"A. A. Daryakenari, Davood Hosseini, A. Apostoluk, Christoph R. Muller, J. Delaunay\",\"doi\":\"10.1109/NANO.2016.7751330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The catalyst support layer is fabricated by applying a DC electrophoretic deposition on a colloid consisting of dispersed nanographitic flakes along with magnesium ions in isopropyl alcohol. The thickness and conductivity of the deposited layers are controlled by varying the time of the voltage application in the electrophoretic deposition EPD technique. The catalyst supports are decorated by sputtering palladium nanostructures serving as the catalyst. The fabricated support layer with the optimum thickness exhibits an improved conductivity and electro-oxidation performance attaining 800 mA/cm2 per mg of palladium.\",\"PeriodicalId\":6646,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"4 1\",\"pages\":\"354-356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2016.7751330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The influence of the thickness of nanographitic coatings fabricated by electrophoretic deposition on ethanol electro-oxidation
The catalyst support layer is fabricated by applying a DC electrophoretic deposition on a colloid consisting of dispersed nanographitic flakes along with magnesium ions in isopropyl alcohol. The thickness and conductivity of the deposited layers are controlled by varying the time of the voltage application in the electrophoretic deposition EPD technique. The catalyst supports are decorated by sputtering palladium nanostructures serving as the catalyst. The fabricated support layer with the optimum thickness exhibits an improved conductivity and electro-oxidation performance attaining 800 mA/cm2 per mg of palladium.