采用非平稳信号处理的盲单通道反卷积

J. Hopgood, P. Rayner
{"title":"采用非平稳信号处理的盲单通道反卷积","authors":"J. Hopgood, P. Rayner","doi":"10.1109/TSA.2003.815522","DOIUrl":null,"url":null,"abstract":"Blind deconvolution is fundamental in signal processing applications and, in particular, the single channel case remains a challenging and formidable problem. This paper considers single channel blind deconvolution in the case where the degraded observed signal may be modeled as the convolution of a nonstationary source signal with a stationary distortion operator. The important feature that the source is nonstationary while the channel is stationary facilitates the unambiguous identification of either the source or channel, and deconvolution is possible, whereas if the source and channel are both stationary, identification is ambiguous. The parameters for the channel are estimated by modeling the source as a time-varyng AR process and the distortion by an all-pole filter, and using the Bayesian framework for parameter estimation. This estimate can then be used to deconvolve the observed signal. In contrast to the classical histogram approach for estimating the channel poles, where the technique merely relies on the fact that the channel is actually stationary rather than modeling it as so, the proposed Bayesian method does take account for the channel's stationarity in the model and, consequently, is more robust. The properties of this model are investigated, and the advantage of utilizing the nonstationarity of a system rather than considering it as a curse is discussed.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"469 1","pages":"476-488"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Blind single channel deconvolution using nonstationary signal processing\",\"authors\":\"J. Hopgood, P. Rayner\",\"doi\":\"10.1109/TSA.2003.815522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind deconvolution is fundamental in signal processing applications and, in particular, the single channel case remains a challenging and formidable problem. This paper considers single channel blind deconvolution in the case where the degraded observed signal may be modeled as the convolution of a nonstationary source signal with a stationary distortion operator. The important feature that the source is nonstationary while the channel is stationary facilitates the unambiguous identification of either the source or channel, and deconvolution is possible, whereas if the source and channel are both stationary, identification is ambiguous. The parameters for the channel are estimated by modeling the source as a time-varyng AR process and the distortion by an all-pole filter, and using the Bayesian framework for parameter estimation. This estimate can then be used to deconvolve the observed signal. In contrast to the classical histogram approach for estimating the channel poles, where the technique merely relies on the fact that the channel is actually stationary rather than modeling it as so, the proposed Bayesian method does take account for the channel's stationarity in the model and, consequently, is more robust. The properties of this model are investigated, and the advantage of utilizing the nonstationarity of a system rather than considering it as a curse is discussed.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"469 1\",\"pages\":\"476-488\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2003.815522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.815522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

盲反卷积是信号处理应用的基础,特别是单通道情况仍然是一个具有挑战性和艰巨的问题。本文考虑退化观测信号可建模为非平稳源信号与平稳失真算子的卷积的单通道盲反卷积。源是非平稳的,而通道是平稳的,这一重要特征有助于对源或通道进行明确的识别,并且可以进行反卷积,而如果源和通道都是平稳的,则识别是模糊的。通过将源建模为时变AR过程,将失真建模为全极滤波器,并使用贝叶斯框架进行参数估计,估计了信道的参数。这个估计可以用来对观察到的信号进行反卷积。与用于估计信道极点的经典直方图方法相反,该技术仅仅依赖于信道实际上是平稳的事实,而不是像这样建模,所提出的贝叶斯方法确实考虑了模型中信道的平稳性,因此更健壮。研究了该模型的性质,讨论了利用系统的非平稳性而不是将其视为一种缺陷的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind single channel deconvolution using nonstationary signal processing
Blind deconvolution is fundamental in signal processing applications and, in particular, the single channel case remains a challenging and formidable problem. This paper considers single channel blind deconvolution in the case where the degraded observed signal may be modeled as the convolution of a nonstationary source signal with a stationary distortion operator. The important feature that the source is nonstationary while the channel is stationary facilitates the unambiguous identification of either the source or channel, and deconvolution is possible, whereas if the source and channel are both stationary, identification is ambiguous. The parameters for the channel are estimated by modeling the source as a time-varyng AR process and the distortion by an all-pole filter, and using the Bayesian framework for parameter estimation. This estimate can then be used to deconvolve the observed signal. In contrast to the classical histogram approach for estimating the channel poles, where the technique merely relies on the fact that the channel is actually stationary rather than modeling it as so, the proposed Bayesian method does take account for the channel's stationarity in the model and, consequently, is more robust. The properties of this model are investigated, and the advantage of utilizing the nonstationarity of a system rather than considering it as a curse is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信