四轴飞行器任务编排的LTL交叉熵优化

Q2 Engineering
Christopher J. Banks, S. Coogan, M. Egerstedt
{"title":"四轴飞行器任务编排的LTL交叉熵优化","authors":"Christopher J. Banks, S. Coogan, M. Egerstedt","doi":"10.1080/23335777.2022.2083689","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper presents a task orchestration framework for multi-agent systems utilising linear temporal logic (LTL) and cross entropy optimisation, a stochastic optimisation technique used for rare-event sampling. We define task orchestration as a combination of task decomposition, allocation and planning for a quadcopter or team of quadcopters given a high-level specification. Specifically, we consider tasks that are complex and consist of environment constraints, system constraints, or both, that must be satisfied. We first approach motion planning for the single agent case where transition systems for the environment allow tasks to be developed as linear temporal logic (LTL) specifications. Trajectories are then generated via motion primitives for a single quadcopter and optimised via cross entropy to ensure optimal satisfaction of a cost function. We extend this work to the multi-agent case where a team of homogeneous quadcopters are considered to satisfy an LTL specification. In order to provide faster computations and initial cost-agnostic sampling, we formulate the online version of multi-agent task allocation via cross entropy for tasks specified in LTL specifications. The results of this framework are verified in simulation and experimentally with a team of quadcopters.","PeriodicalId":37058,"journal":{"name":"Cyber-Physical Systems","volume":"41 1","pages":"273 - 312"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LTL cross entropy optimisation for quadcopter task orchestration\",\"authors\":\"Christopher J. Banks, S. Coogan, M. Egerstedt\",\"doi\":\"10.1080/23335777.2022.2083689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper presents a task orchestration framework for multi-agent systems utilising linear temporal logic (LTL) and cross entropy optimisation, a stochastic optimisation technique used for rare-event sampling. We define task orchestration as a combination of task decomposition, allocation and planning for a quadcopter or team of quadcopters given a high-level specification. Specifically, we consider tasks that are complex and consist of environment constraints, system constraints, or both, that must be satisfied. We first approach motion planning for the single agent case where transition systems for the environment allow tasks to be developed as linear temporal logic (LTL) specifications. Trajectories are then generated via motion primitives for a single quadcopter and optimised via cross entropy to ensure optimal satisfaction of a cost function. We extend this work to the multi-agent case where a team of homogeneous quadcopters are considered to satisfy an LTL specification. In order to provide faster computations and initial cost-agnostic sampling, we formulate the online version of multi-agent task allocation via cross entropy for tasks specified in LTL specifications. The results of this framework are verified in simulation and experimentally with a team of quadcopters.\",\"PeriodicalId\":37058,\"journal\":{\"name\":\"Cyber-Physical Systems\",\"volume\":\"41 1\",\"pages\":\"273 - 312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23335777.2022.2083689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335777.2022.2083689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个多智能体系统的任务编排框架,利用线性时间逻辑(LTL)和交叉熵优化(一种用于罕见事件采样的随机优化技术)。我们将任务编排定义为给定高级规范的四轴飞行器或四轴飞行器团队的任务分解、分配和计划的组合。具体地说,我们考虑的任务是复杂的,并且包含环境约束、系统约束,或者两者都必须得到满足。我们首先探讨单智能体情况下的运动规划,其中环境的转换系统允许将任务开发为线性时间逻辑(LTL)规范。然后通过单个四轴飞行器的运动原语生成轨迹,并通过交叉熵进行优化,以确保成本函数的最佳满足。我们将这项工作扩展到多智能体的情况,在这种情况下,一组同构四轴飞行器被认为满足LTL规范。为了提供更快的计算和初始成本不可知的采样,我们通过交叉熵为LTL规范中指定的任务制定了多智能体任务分配的在线版本。该框架的结果在仿真和实验中与一组四轴飞行器验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LTL cross entropy optimisation for quadcopter task orchestration
ABSTRACT This paper presents a task orchestration framework for multi-agent systems utilising linear temporal logic (LTL) and cross entropy optimisation, a stochastic optimisation technique used for rare-event sampling. We define task orchestration as a combination of task decomposition, allocation and planning for a quadcopter or team of quadcopters given a high-level specification. Specifically, we consider tasks that are complex and consist of environment constraints, system constraints, or both, that must be satisfied. We first approach motion planning for the single agent case where transition systems for the environment allow tasks to be developed as linear temporal logic (LTL) specifications. Trajectories are then generated via motion primitives for a single quadcopter and optimised via cross entropy to ensure optimal satisfaction of a cost function. We extend this work to the multi-agent case where a team of homogeneous quadcopters are considered to satisfy an LTL specification. In order to provide faster computations and initial cost-agnostic sampling, we formulate the online version of multi-agent task allocation via cross entropy for tasks specified in LTL specifications. The results of this framework are verified in simulation and experimentally with a team of quadcopters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cyber-Physical Systems
Cyber-Physical Systems Engineering-Computational Mechanics
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信