mv -钻机和乘积mv -代数

Q1 Arts and Humanities
Alejandro Estrada, Y. Poveda
{"title":"mv -钻机和乘积mv -代数","authors":"Alejandro Estrada, Y. Poveda","doi":"10.1080/11663081.2018.1534795","DOIUrl":null,"url":null,"abstract":"ABSTRACT We introduce the variety of Many-Valued-Weak rigs (MVW-rigs). We provide an axiomatisation and establish, in this context, basic properties about ideals, homomorphisms, quotients and radicals. This new class contains the class of product MV-algebras presented by Di Nola and Dvurečenskij in 2001 and by Montagna in 2005. The main result is the compactness of the prime spectrum of this new class, endowed with the co-Zariski topology as defined by Dubuc and Poveda in 2010.","PeriodicalId":38573,"journal":{"name":"Journal of Applied Non-Classical Logics","volume":"1 1","pages":"78 - 96"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MVW-rigs and product MV-algebras\",\"authors\":\"Alejandro Estrada, Y. Poveda\",\"doi\":\"10.1080/11663081.2018.1534795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We introduce the variety of Many-Valued-Weak rigs (MVW-rigs). We provide an axiomatisation and establish, in this context, basic properties about ideals, homomorphisms, quotients and radicals. This new class contains the class of product MV-algebras presented by Di Nola and Dvurečenskij in 2001 and by Montagna in 2005. The main result is the compactness of the prime spectrum of this new class, endowed with the co-Zariski topology as defined by Dubuc and Poveda in 2010.\",\"PeriodicalId\":38573,\"journal\":{\"name\":\"Journal of Applied Non-Classical Logics\",\"volume\":\"1 1\",\"pages\":\"78 - 96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Non-Classical Logics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/11663081.2018.1534795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Non-Classical Logics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11663081.2018.1534795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

摘要

摘要介绍了多值弱钻机(mvw -rig)的种类。我们给出了一个公理化,并在此背景下建立了关于理想、同态、商和根的基本性质。这类新代数包含了由Di Nola和dvure enskij在2001年和Montagna在2005年提出的积mv代数。主要的结果是这个新类的素谱的紧性,并赋予了Dubuc和Poveda在2010年定义的co-Zariski拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MVW-rigs and product MV-algebras
ABSTRACT We introduce the variety of Many-Valued-Weak rigs (MVW-rigs). We provide an axiomatisation and establish, in this context, basic properties about ideals, homomorphisms, quotients and radicals. This new class contains the class of product MV-algebras presented by Di Nola and Dvurečenskij in 2001 and by Montagna in 2005. The main result is the compactness of the prime spectrum of this new class, endowed with the co-Zariski topology as defined by Dubuc and Poveda in 2010.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Non-Classical Logics
Journal of Applied Non-Classical Logics Arts and Humanities-Philosophy
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信