有损压缩中的最小-平均和最小-最大准则

Guido M. Schuster , Aggelos K. Katsaggelos
{"title":"有损压缩中的最小-平均和最小-最大准则","authors":"Guido M. Schuster ,&nbsp;Aggelos K. Katsaggelos","doi":"10.1016/S0083-6656(97)00048-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we propose an algorithm for the optimal bit allocation among dependent quantizers for the minimum-maximum (MINMAX) distortion criterion. We compare this algorithm to the well-known Lagrange multiplier method for the minimum-average (MINAVE) distortion criterion. We point out the differences between these two distortion criteria, and their implications for coding applications. We argue that even though the MINAVE criterion is more popular, in many cases, the MINMAX criterion is more appropriate. We introduce the algorithms for solving the optimal bit allocation problem among dependent quantizers for both criteria and highlight the similarities and differences. We present the two algorithms using the same frame-work, which sheds new light on the relationship between the MINAVE and the MINMAX criteria. We point out that any problem which can be solved with the MINAVE criterion can also be solved with the MINMAX criterion, since both approaches are based on the same assumptions.</p></div>","PeriodicalId":101275,"journal":{"name":"Vistas in Astronomy","volume":"41 3","pages":"Pages 427-437"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0083-6656(97)00048-2","citationCount":"11","resultStr":"{\"title\":\"The minimum-average and minimum-maximum criteria in lossy compression\",\"authors\":\"Guido M. Schuster ,&nbsp;Aggelos K. Katsaggelos\",\"doi\":\"10.1016/S0083-6656(97)00048-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we propose an algorithm for the optimal bit allocation among dependent quantizers for the minimum-maximum (MINMAX) distortion criterion. We compare this algorithm to the well-known Lagrange multiplier method for the minimum-average (MINAVE) distortion criterion. We point out the differences between these two distortion criteria, and their implications for coding applications. We argue that even though the MINAVE criterion is more popular, in many cases, the MINMAX criterion is more appropriate. We introduce the algorithms for solving the optimal bit allocation problem among dependent quantizers for both criteria and highlight the similarities and differences. We present the two algorithms using the same frame-work, which sheds new light on the relationship between the MINAVE and the MINMAX criteria. We point out that any problem which can be solved with the MINAVE criterion can also be solved with the MINMAX criterion, since both approaches are based on the same assumptions.</p></div>\",\"PeriodicalId\":101275,\"journal\":{\"name\":\"Vistas in Astronomy\",\"volume\":\"41 3\",\"pages\":\"Pages 427-437\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0083-6656(97)00048-2\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vistas in Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0083665697000482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vistas in Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0083665697000482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种基于最小-最大失真准则的相关量化器之间的最优比特分配算法。我们将该算法与著名的拉格朗日乘法相比较,用于最小平均(MINAVE)失真准则。我们指出了这两种失真标准之间的差异,以及它们对编码应用的影响。我们认为,尽管MINAVE准则更受欢迎,但在许多情况下,MINMAX准则更合适。我们介绍了两种标准的相关量化器之间解决最优位分配问题的算法,并强调了它们的异同。我们提出了使用相同框架的两种算法,这揭示了MINAVE和MINMAX标准之间的关系。我们指出,任何可以用MINAVE准则解决的问题也可以用MINMAX准则解决,因为这两种方法都是基于相同的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The minimum-average and minimum-maximum criteria in lossy compression

In this paper we propose an algorithm for the optimal bit allocation among dependent quantizers for the minimum-maximum (MINMAX) distortion criterion. We compare this algorithm to the well-known Lagrange multiplier method for the minimum-average (MINAVE) distortion criterion. We point out the differences between these two distortion criteria, and their implications for coding applications. We argue that even though the MINAVE criterion is more popular, in many cases, the MINMAX criterion is more appropriate. We introduce the algorithms for solving the optimal bit allocation problem among dependent quantizers for both criteria and highlight the similarities and differences. We present the two algorithms using the same frame-work, which sheds new light on the relationship between the MINAVE and the MINMAX criteria. We point out that any problem which can be solved with the MINAVE criterion can also be solved with the MINMAX criterion, since both approaches are based on the same assumptions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信